TABLE OF **CONTENTS**

WELCOME FROM THE MEETING CHAIR	2
WELCOME FROM THE EXECUTIVE COMMITTEE	4
ESACT COMMITTEES	5
SPONSOR ACKNOWLEDGEMENTS	7
EXHIBITOR ACKNOWLEDGEMENTS	10
VENUE MAP	12
EXHIBITION MAP - CROMDALE HALL	14
EXHIBITION MAP - LENNOX SUITE	15
A-Z EXHIBITING PARTNERS	16
NOVEL ESACT PRACTICAL COURSE 2024	18
UPCOMING ESACT COURSES 2024	19
SOCIAL PROGRAMME	22
IMPORTANT INFORMATION	26
ESACT INNOVATION AWARD	31
ESACT MEDALS	33
ESACT GRANTS	35
PROGRAMME SCHEDULE	37
CONFERENCE WORKSHOPS	41
SPONSORED SYMPOSIA	45
CONFERENCE WORKSHOPS	47
SCIENTIFIC PROGRAMME	52
INDUSTRY EDUCATIONAL SESSIONS	66
POSTER PRESENTATIONS	77

WELCOME FROM THE MEETING CHAIR

It is my privilege to welcome you to my home city of Edinburgh to participate in, what will be, a great meeting of the community that makes up the **European** Society for the Advancement of Cell Technologies (ESACT). Initially intended to run in 2023, the COVID-19 pandemic reset all plans for face-to-face ESACT meetings until the return to biennial ESACT meetings in 2022 in Lisbon. So, we have had an extended planning cycle for this meeting and I have been fortunate to have the support of a great group of folk. Big thanks to all of you who have provided advice and support as part of the Local Organising and Scientific Committees, there would not be a meeting without your contributions. I am very grateful to many others who have willingly contributed their time to finess the meeting structure (reviewing abstracts for oral and poster presentations, developing subject-specific workshops and symposia, arranging the ESACT Frontiers lunch and reviewing posters at the meeting). Much of the "heavylifting" in the administration of the meeting and co-ordination activities has been down to the support provided by Conference Partners International (CPI) - thank you. Over the past 5 years the ESACT Executive Committee have provided a marvellous supporting network to me, as a resource of knowledge and guidance based on the wealth of experience built up over the organisation of multiple ESACT meetings. Before ending this section of acknowledgements, I want to thank all our sponsors. The ESACT community is grateful for your generosity and involvement in our shared interests, I hope you have a great conference.

The meeting theme - *application of animal cell technologies to advance the health and wealth of society* – has been designed to address the importance of animal cell products for therapeutic use. Our sessions cover the identification, design, development, manufacture, quality assessment and use of existing and emerging products coupled with the fundamental understanding that underpins the biology and technology required for future understanding. We have outstanding invited speakers covering the latest developments within the sector and exceptional keynote speakers who address broad thematic areas of scientific and societal significance. This gives us an overall vision that stretches from the clinician/patient perspective of new medicines to the factors key to the production and quality of emerging medicines to the sustainability of the processes that will be necessary for manufacture. The Scientific Committee (SC) faced the incredibly challenging task of identification of submitted abstracts to be nominated for short talks. Using the blinded scores from our abstract review panel, the SC identified 33 presentations that have been incorporated into the oral scientific sessions. The SC also ranked the abstracts submitted for posters and generated the Top 100 posters that will compete for the poster prize. Lots of stimulating science and many interesting discussions await us over the next few days.

ESACT meetings are built around networking to enable discussions of excellent science and generate connections that will enhance the future interaction and collaboration. I am certain you will find this in the format we have arranged in Edinburgh. If you are new to ESACT or an early career researcher unsure of the next stages in your career path - join the ESACT Frontiers lunch on Sunday (fit this between the workshops where you will have had the opportunity to mix with colleagues with common interests). Be inspired by the game-changing science that underpins the ESACT Innovation Award and the contribution it makes to your research. Make full use of the poster sessions – capture participants to discuss the exciting data on your poster or engage that person who is using that technique you had only read about until now. Visit the exhibitors - there's a wealth of scientific and technical knowledge awaiting your discussion (including at the Industry Educational Sessions) and you know that your lab would be revolutionised by access to that shiny machine. Catch people at coffee and meal breaks or one the planned activities. We have planned social activities that will maximise your opportunities to network whether at the exhibitor reception, a poster session, a tour of the sights and sounds of Edinburgh or at the gala dinner.

I hope that you will all have great conference and are stimulated by the science and networking. We have a special welcome for 52 PhD and early career scientists who have received an ESACT2024 bursary to aid attendance at the meeting. ESACT2024 is a large multinational conference (we have registrants from 32 countries) but the community is very welcoming and we will all return home having made many new contacts and (most likely) friends.

Alan J Dickson

Alan J Dickson Chair, ESACT 2024

WELCOME FROM THE EXECUTIVE COMMITTEE

On behalf of the ESACT Executive Committee it is my great pleasure to welcome you to the 28th ESACT meeting in Edinburgh – we look forward again to days of interesting discussions, networking and great science!

We have seen exciting times over the last years, overcoming a pandemic and observing the field to move forward in many diverse directions, from the standard platform technologies, to cell-based therapies on small scale for each individual patient which require completely different approaches from industrial manufacturing, and towards gene therapies and the technological challenges they entail. ESACT as a society over the years has aimed to integrate these new technologies which is indicated by our new name that was chosen during the last meeting in Lisbon in 2022: from now on we will be called the **European Society for the Advancement of Cell Technologies** which allows us to keep the well-established brand ESACT while reflecting the changes that the field has undergone.

What we aim to keep, however, is the format of our meetings: these have always been characterised by the lively exchange of ideas, networking and personal interaction which make this meeting the vibrant event it usually is.

We look forward to another such in this lovely city!

With kind regards

Windle the

Nicole Borth ESACT Chair

ESACT COMMITTEES

ESACT 2024 ORGANISING COMMITTEE

Alan Dickson University of Manchester, UK (Chair, ESACT2024)

Nicole Borth BOKU, Austria

Jonathan Dempsey Pathway Biopharma, UK

Joanne Flannelly University of Manchester, UK **Laura Kuhner** Kuhner Ag, Switzerland

Glenn Robinson Getinge, UK

Mark Smales University of Kent, UK

Chris van der Walle Cell & Gene Therapy Catapult, UK

ESACT EXECUTIVE COMMITTEE

Nicole Borth BOKU, Austria (Chair)

Stefanos Grammatikos UCB, Belgium (Vice-Chair)

Anne Tolstrup AbtBioConsult, Denmark (Secretary)

Francesc Gòdia UAB, Spain (Treasurer) **Niall Barron** DCU and NIBRT, Ireland

Paulo Fernandes Orchard Therapeutics, UK

Emma Petiot CPE-Lyon Engineer School, France

António Roldão IBET, Portugal

ESACT COMMITTEES

ESACT 2024 SCIENTIFIC COMMITTEE

Mark Smales University of Kent, UK (Chair, Scientific Committee)

Christina Alves Takeda, USA

Paula Alves iBET and ITQB NOVA Universidade de Lisboa, Portugal

Niall Barron DCU and NIBRT, Ireland

Mike Betenbaugh John Hopkins WSE, USA

Andreas Castan Cytiva, Sweden Simon Fischer Boehringer Ingelheim, Germany

Chetan Goudar Amgen, USA

Stefanos Grammatikos UCB, Belgium

Laura Palomares IBT-UNAM, Mexico

Susan Rosser University of Edinburgh, UK

Anne Tolstrup AbtBioConsult, Denmark

Till Wenger Boehringer Ingelheim, Germany

ESACT 2024 POSTERS COMMITTEE

Claire Pearce Xap Therapeutics, UK **Nikolas Zeh** Boehringer Ingelheim, Germany

Nuša Pristovšek Novo Nordisk A/S, Denmark

6

SPONSOR ACKNOWLEDGEMENTS

PLATINUM PARTNERS

GOLD PARTNERS

Irvine Scientific

SILVER PARTNERS

Thank you to our sponsors for your continued support of the European Society for Animal Cell Technology Meeting.

SPONSOR ACKNOWLEDGEMENTS

WORKSHOP PARTNERS

SVIECTERS

EDUCATIONAL GRANTS

The Educational Grants have been used exclusively to support the Scientific Programme

SPONSOR ACKNOWLEDGEMENTS

INDUSTRY EDUCATIONAL PARTNERS

Irvine Scientific

Lonza

P Pfanstiehl

SVIFCTFA3

SEED • **Biosciences**

EXHIBITOR ACKNOWLEDGEMENTS

Thank you to our sponsors for your continued support of the European Society for Animal Cell Technology Meeting.

ASIMOV

CYT	ENA	»
A BICO COMPANY		

ABER

FLOWNAMICS

FUJ:FILM

₹∆3SELION

() esact2024.com

The 28th European Society for Animal Cell Technology (ESACT) Conference

10

ရမင

SANI Membranes

SGS

SNEN**Γ**EC

biosystems

METTLER TOLEDO

P Pfanstiehl

REDSHIFTBio

🕝 securecell

ThermoFisher

The above sponsors have paid to exhibit a stand and have had no input into the content of this meeting

INFORS M

Lonza

nova[®] biomedical

ะงารบรกง

SEED • Biosciences

VENUE MAP

VENUE MAP

EXHIBITION MAP - CROMDALE HALL

The 28th European Society for Animal Cell Technology (ESACT) Conference

EXHIBITION MAP - LENNOX SUITE

The 28th European Society for Animal Cell Technology (ESACT) Conference 🛛 🌐 esact2024.com

t2024.com 15

A-Z EXHIBITING PARTNERS

STAND	ORGANISATION
11	908 Devices
9	Aber Instruments Ltd
32	Abselion
61	Adolf Kühner AG
15	ADVANCED INSTRUMENTS
19	Aseptic Group
28	Asimov
29	ATUM
22	Beckman Coulter Life Sciences
3	BioConcept Ltd.
51	Biofidus Ag
71	Bionet Servicios Técnicos, S.L.
52	Bpes
13	Bruker Cellular Analysis
36	Capricorn Scientific Gmbh

STAND	ORGANISATION
55	CARR Biosystems
10	CerCell A/S
41	Clean Cells
46	CYTENA GmbH
72	Cytiva
1	Cytomos
45	ENTEGRIS GMBH
25	Enzyscreen Bv
58	Eppendorf Bioprocess
44	Evonik Industries AG
33	Flownamics
40	Fox Biosystems
2	FrieslandCampina Ingredients
59	FUJIFILM Irvine Scientific
7	GEA

A-Z EXHIBITING PARTNERS

STAND	ORGANISATION	STAND	ORGANISATION
50	Getinge	17	Pfanstiehl Inc.
56	Green Elephant Biotech GmbH	6	Qbdc Gmbh
70	HAMILTON BONADUZ AG	37	RedShiftBio
63	I & L Biosystems	60	Roche CustomBiotech
68	lcosagen	73	SANI Membranes
54	Infors HT	31	SaniSure
47	lprasense	49	Sartorius
48	lpratech	24	sbi, Scientific Bioprocessing
14	Kerry	42	Securecell AG
74	Levitronix GmbH	34	SEED Biosciences SA
18	Logos Biosystems	62	Sgs Vitrology
38	Lonza	20	Shanghai RuiYu Biote
69	Merck	35	Sphere Fluidics
12	Mettler-Toledo GmbH	57	Syngensys Ltd
27	Nova Biomedical	75	SYNENTEC
67	PAIA Biotech GmbH	64	TECNIC

17	Pfanstiehl Inc.
6	Qbdc Gmbh
37	RedShiftBio
60	Roche CustomBiotech
73	SANI Membranes
31	SaniSure
49	Sartorius
24	sbi, Scientific Bioprocessing
42	Securecell AG
34	SEED Biosciences SA
62	Sgs Vitrology
20	Shanghai RuiYu Biotech
35	Sphere Fluidics
57	Syngensys Ltd
75	SYNENTEC
64	TECNIC

NOVEL ESACT PRACTICAL COURSE 2024

INTRODUCTION TO CELL BIOREACTOR PRODUCTION AND MONITORING: Application to protein & virus processes

Capsid base ~

Maximum of 8 participants per year Dates : 23rd to 27th of September 2024 Full hands-on program of 4 days in a Level 2 Facility

Course Coordinators:	Emma PETIOT (Université Claude Bernard Lyon) Karen Moreau (Université Claude Bernard Lyon)
Location:	IUT Lyon – Département Génie Biologique
	69100 Villeurbanne – France
Course fees:	Academic €2500
	Industrial €3300
	(fees covers training and lunch, but do not cover hotel booking)
Mandatory pre-requisite:	Academic or Industrials (PhD students, Post-Doc,
	Engineers, etc.) that already have cell culture
	knowledge, ideally, which have already followed
	one of the ESACT theoretical courses.

FULL DETAILS ON ESACT.ORG

UPCOMING ESACT COURSES 2024

14th EDITION ANIMAL CELL TECHNOLOGY COURSE 22-26 September 2024 Llafranc (Spain)

Organisers Francesc Gòdia *Universitat Autònoma de Barcelona (ES)*

Paula Alves *iBET and ITQB Universidade NOVA de Lisboa (PT)*

4th EDITION

BIOPROCESSING& MANUFACTURING GENE AND CELLTHERAPY PRODUCTS

> 29 September - 3 October 2024 Llafranc (Spain)

Organisers

Eric J. Kremer CNRS, IGMM Université de Montpellier (FR)

Joaquim Vives Banc de Sang I Teixits (ES)

Margarida Serra *iBET (PT)*

For more information and the course programmes see ESACT.org

UPCOMING ESACT COURSES 2024

9th EDITION VACCINE TECHNOLOGY 6-10 October 2024 Llafranc (Spain)

Organisers Amine Kamen *McGill University (CA)*

Yvonne Genzel Max-Plank Institut Magdeburg (DE)

Laura Cervera Universitat Autònoma de Barcelona (ES)

2nd EDITION METABOLIC AND BIOPROCESS MODELLING FOR ANIMAL CELLS 13-17 October 2024 Llafranc (Spain)

Organisers

Dong-Yup Lee Sungkyunkwan University (KP)

loscaniJiménez del Val University College Dublin (IE)

Emma Petiot Université de Lyon (FR)

For more information and the course programmes see ESACT.org

JAACT Japanese Association for Animal Cell Technology

THE 38TH ANNUAL AND INTERNATIONAL MEETING JAACT2025 OSAKA

Monday December 8th - Thursday December 11th 2025

Venue: Osaka International Conference Center

Meeting Chairperson : Takeshi Omasa (Osaka U)

SOCIAL PROGRAMME

All delegates are required to wear their name badge to all of the social programme events.

Exhibitors Reception - Sunday 23 June, 19:30 – 21:00 Edinburgh International Conference Centre (EICC)

All participants are kindly invited to attend the Exhibitors Reception which takes place after the first Scientific Session on Sunday evening. Join colleagues and friends, old and new, in a relaxed setting.

Pub Quiz – Monday 24 June, 21:00 – 23:00 Malones Edinburgh

Join us for an evening of brain-teasing fun at the Pub Quiz sponsored by Evonik Industries AG. Get your thinking caps on and gather your team for a night filled with trivia, laughter, and maybe a few surprises!

Tickets are complimentary and on a first come first served basis. It is mandatory to be registered in advance.

Sights and Sounds of Edinburgh – Tuesday 25 June, 17:30 – 20:00

Join colleagues and friends for group walking tours around Edinburgh to visit must-see spots recommended by Edinburgh locals.

Limited places available per tour, mandatory to be registered in advance.

ESACT Dinner – Tuesday 25 June, 20:00 – 23:00 Edinburgh International Conference Centre (EICC)

Network with colleagues and friends at this dinner within the EICC.

A ticket to this dinner is included within your delegate registration however sign up is required during registration.

Congress Dinner – Wednesday 26 June, 19:00 – 02:00 National Museum of Scotland

The National Museum of Scotland, in the heart of Edinburgh's Old Town, offers an iconic setting for this year's Congress Dinner. The Grand Gallery's soaring glass atrium and sweeping staircases present a breath-taking backdrop for friends and colleagues to celebrate the end of ESACT 2024!

A ticket to this dinner is included within your delegate registration however sign up is required during registration

Who we are

The Advanced Cell Technology Industrial Platform (ACTIP) is an independent non-profit association of European companies and institutions engaged in the industrial use of advanced cell technology for research, development and/or production of biopharmaceuticals, vaccines, gene & cell therapies and other therapeutic approaches. Its main objectives are to bring advanced cell technology experts together for networking, keeping up to date on cutting-edge developments and focus on technological and applied-oriented challenges for the industrial use of advanced cell technology.

Why become a member

- Become part of a well-connected community of cell technology practitioners and learn from your peers in the industry.
- Opportunity for a member company or institution representative to attend two scientific ACTIP meetings a year organized across Europe.
- ACTIP meetings feature high-level presentations on the latest advancements in cell technology by invited speakers from industry, academia, and regulatory agencies.
- The meeting program includes a site visit at a member company or institution providing detailed insight into their R&D activities, facilities, and organization.
- ACTIP meetings are small-scale with +/- 50 participants, informal and ideal to interact with experts across the industry, potential business partners, suppliers, or customers.
- Meet and interact with ambitious early career scientists in the field of cell technology invited to the ACTIP meetings through the ACTIP Fellowship Award program.
- Excellent opportunities for networking and building professional relationships.
- Receive three ACTIP newsletters a year with scientific and regulatory updates.

How to join

ACTIP membership is open to companies and institutions located in Europe, engaged in the industrial use of advanced cell technology, and performing significant research and development activities. For more information about the membership application process and fees please contact the ACTIP secretariat (secretariat@actip.org).

ACTIP Fellowship Award program

ACTIP is connecting industry expertise and promoting talented early career scientists active in the field of advanced cell technology. Candidates who are awarded the ACTIP Fellowship are invited to present their research to the ACTIP community during a plenary session at one of the upcoming ACTIP scientific meetings. Over the years this has proven to be an excellent way to interact with industry experts and expand professional networks on a European scale.

The Fellowship Award includes all costs paid to attend and present your research at a two-day scientific ACTIP meeting and a €1000 prize!

How to apply

Every year ACTIP publishes a call for ACTIP Fellowship Award applications on its website. Eligible candidates must possess an academic degree in a field relevant to biomanufacturing and be located in Europe. An application includes an abstract, a few concise statements for the reviewers, and a current Curriculum Vitae. Received applications are evaluated and scored by ACTIP members based on their scientific quality, impact, novelty and value to the animal cell industrial community.

For more information about the application process and eligibility criteria please visit actip.org

VENUE

Edinburgh International Conference Centre (EICC), The Exchange, 150 Morrison Street, Edinburgh, EH3 8EE

MEETING SECRETARIAT

Conference Partners International (CPI) are the appointed Meeting Secretariat for ESACT 2024.

The team will be onsite at the ESACT 2024 Meeting and will be available from 23 – 26 June during registration opening hours:

Sunday	10:00 - 21:00
Monday	08:00 - 21:00
Tuesday	08:00 - 17:30
Wednesday	08:00 - 16:45

NAME BADGE

A name badge will be provided on your arrival at the ESACT 2024 registration desks located in the EICC. You must wear the name badge at all times and should be visible both inside the Meeting venue as well as the social events.

OFFICIAL LANGUAGE

The official language of the Meeting is English. No simultaneous translation will be provided.

DISCLAIMER

The European Society for Animal Cell Technology (ESACT) herby provides notice to conference attendees and anyone else, that ESACT makes no warranty of any kind whatsoever, expressed or implied, that any information, materials, techniques or products or anything else presented at this conference is

accurate, valid adequate or fit for any purpose whatsoever. Conference attendees are solely responsible for determining the validity, adequacy and fitness of any information, materials or products or anything else presented at this conference for any and all uses. Statements and descriptions made by ESACT at this conference and included in conference literature are information only and are not made or given as a warranty. The views, opinions and statements made at the conference are solely those of the speakers and may not reflect the views of ESACT.

Furthermore, speakers may have vested interests in the concepts and products they discuss.

It is further understood and agreed that ESACT shall not be liable whether in contract, in tort, under any warranty, in any negligence or otherwise for any kind of claim, loss, damage or expense of any kind arising out of or resulting from the use of any information, materials, products or anything else presented at this conference, and under no circumstances shall ESACT be liable for special, indirect or consequential damages.

ESACT and/or its agents have the right to cancel the conference or any of the arrangements, timetables, plans or other items relating directly or indirectly to the conference without prior notice for any reason beyond their control. The conference and/or its agents shall not be liable for any loss, damage, expenditure or inconvenience caused as a result of such alteration or cancellation.

ACCESS TO THE MEETING

The delegate fee gives access to the following:

- · Access to all sessions to the ESACT 2024 Meeting
- Teas, coffees and lunches
- · All social events

Accompanying person fee gives access to:

All social events

Exhibition only passes gives access to:

- Exhibition and posters
- Exhibitors Reception on Sunday
- Teas, coffees and lunches

CLOAKROOM

A staffed cloakroom is available during meeting hours and can be found in the Strathblane Hall. Any items left at the cloakroom are the responsibility of the individual and ESACT 2024 cannot be held accountable for any loss of personal items.

WI-FI ACCESS

Network: *delegate* Password: *haymarket*

FIRE SAFETY

On discovering a fire, please inform the nearest member of staff. In the event of a fire alarm activation you will hear a "two tone electronic sounder" and delegates shall be directed to the Assembly Points by EICC Staff & Hosts using the nearest Emergency Exits.

In the event of a medical emergency or someone requires First Aid treatment please contact any member of staff and request assistance.

SOCIAL MEDIA / PHOTOGRAPHY / VIDEO POLICY

Photography, audio recording and video recording may be taking place at the conference. The release, publication, exhibition, or reproduction of this content will be used for news, webcasts, promotional purposes, advertising, inclusion on websites, social media, or any other purpose by the conference and its affiliates and representatives. Please contact us at the registration desk if you wish to be removed from any such materials.

Taking pictures or videos of presentations is not permitted unless the speaker provides permission at the start of their talk.

POSTER POLICY

All attendees are to treat the posters as the property of the presenter and are not to copy them in any way. In the case that a poster presenter allows permission to take pictures of his or her work, official 'Photography OK' stickers are available from the registration desk. Taking pictures, videos or otherwise reproducing posters or any part thereof is not permitted without the permission of the presenter unless a 'Photography OK' sticker is found on the poster.

LIABILITY

The ESACT 2024 organising committee and the Meeting Secretariat cannot accept liability for personal injuries, loss of or damage of whatever nature incurred by participants and/or accompanying persons to their luggage and/ or personal belongings.

SPEAKER PREVIEW ROOM

The speaker preview room is located in the Soutra Room. This room will be open for speakers to provide their presentations between the following times:

Sunday	10:00 - 19:00
Monday	08:00 - 19:30
Tuesday	08:00 - 17:30
Wednesday	08:00 - 17:00

Presentations must be uploaded no later than 2 hours prior to the scheduled session.

CODE OF CONDUCT

ESACT 2024 is dedicated to providing a harassment-free conference experience for everyone, regardless of gender, gender identity and expression, age, sexual orientation, disability, physical appearance, body size, race, ethnicity, religion (or lack thereof), or technology choices. We do not tolerate harassment of delegates in any form. Inappropriate language and imagery are not acceptable to be included in presentations, workshops, networking forums and other online media. Conference delegates violating these rules may be sanctioned or expelled from the conference without a refund at the discretion of the conference organisers.

LEAD SCANNING

Your name, organisation, country and email will be shared with our industry partners should you agree to have your delegate badge scanned at any stage during ESACT 2024. You may receive promotional and non promotional material from the industry partner who scanned your delegate badge. Please note you can opt out at any time by contacting the industry representative directly.

MOBILE PHONES

We request that attendees keep their mobile phones on silent in all rooms where scientific and educational sessions are being held, as well as in and around the poster and exhibition area.

ESACT INNOVATION AWARD

The ESACT Innovation Award is to recognize outstanding **innovators and contributors** to the field of Animal Cell Culture Technology (ACCT). ESACT has had a profound impact on the development of ACCT-based production of biologicals as human therapeutics as well as diagnostics. Over the years, several landmark contributions have been made by scientists and organizations associated with ESACT, yet, there has not been a mechanism to recognize such contributions and disseminate their impact. This Award aims to fill this need.

For the purpose of this Award and to provide clarity, ESACT defines "Animal Cell Culture Technology" as:

Applied science, technologies, systems and processes that enable, facilitate or improve the use of cultured animal cells in research, diagnostic and therapeutic applications.

The Award is presented at the discretion of the ESACT Award Committee during the ESACT bi-annual Scientific Meeting. The Award recipient(s) is(are) invited to present the **ESACT Innovation Award Lecture** at the ESACT2024 Scientific Meeting immediately following the award presentation. The invitation to attend the ESACT Meeting will further include all travel expenses, accommodation during the Meeting and a waiver of registration fees. The value of the Award will be a sum of £5000 together with a commemorative plaque.

ESACT Executive Committee members, as well as Award Committee members, are ineligible for the Award during the term of their respective Committee membership and for a two-year period thereafter. All other individuals or organizations that satisfy the Award criteria above are eligible for nomination for the Award.

INNOVATION AWARD RECIPIENT

ESACT MEDAL : JAACT

The Japanese Association for Animal Cell Technology (JAACT) was founded in 1991. It is an Association for the exchange of academic information by researchers and engineers specializing in science and technology related to animal cells. The academic field covered by JAACT ranges from cell cultivation and analysis of cell characteristics to production and control of useful materials, cell therapy and the creation of artificial cells. In other words, it covers all the areas, applied and basic, for making animal cells contribute to supporting a healthy, normal life. One of the explicit goals in our society's mission statement is "the advancement and dissemination of animal cell technologies" focusing on "advanced industryacademia collaboration". "international

and interdisciplinary", "supporting industrial activities", and "science and engineering for practical use". The two research tenets of JAACT are "Food and Health" and "Biologics Production" and hence, JAACT provides a platform for active discussions via various international and national meetings and symposia.

A strong relationship with ESACT was formed already in 1994 and began with the participation of a number of JAACT members at the 1994 ESACT meeting in Veldhoven. Representatives from ESACT are since then regularly invited to JAACT conferences and vice versa to stimulate interaction and exchange of ideas across continents.

Dr. Takeshi Omasa, Professor of Osaka University and Dean of Graduate School/School of Engineering has served as JAACT's president since 2019. On top of his JAACT president role, Dr. Omasa is also serving as President of AFOB (Asian Federation of Biotechnology). On behalf of JAACT, Dr Omasa received the ESACT medal at the JAACT meeting in Nagoya, Japan, in November 2023, in recognition of the long and stimulating collaboration between JAACT and ESACT.

ESACT MEDAL : PAULA ALVES

Paula Alves is the CEO of iBET and Professor at NOVA University of Lisbon. She received her B.Sc. in Biochemistry from the Sciences Faculty of the University of Lisbon, in 1991 and her Ph.D. in Biochemical Engineering from the NOVA University of Lisbon, in 2001.

Paula has been working on the advancement of cell culture technologies for more than 30 years. Her research integrates understanding of cell metabolism with biochemical engineering tools for the improvement of bioprocesses efficiency. Paula's work has contributed to the

development of industrially relevant and academically recognized tools and technologies for the production of biopharmaceuticals and ATMPs (Advanced Therapy Medicinal Products), in particular pluripotent stem cells and viral vectors for cell and gene therapy. The 40 PhD students, plus masters and postdocs she supervised contributed to Paula's exciting research career. She is co-author of more than 300 papers that, together with many communications in scientific conferences, contributed to the global recognition of iBET.

Participating at ESACT meetings since 1991, Paula was elected to the ESACT Executive Committee in 2005. She served this committee as regular member (2005-2008), as secretary (2009-2013), vice-chairperson (2013-2017) and chairperson (2017-2022). During this period Paula was actively involved in establishing ESACT legal statutes and on the development of the ESACT web page and communication strategy. Together with Francesc (Quico) Godia from UAB-Spain, Paula started the ESACT course series in 2011. She was the Chair of ESACT2022 Conference (Lisbon) and a member of the Scientific Committee of ESACT 2013, ESACT 2017 and ESACT 2024 meetings and of the Organizing Committee of ESACT 2015 meeting. Paula participates in meetings and courses organized by related societies promoting the ESACT activities, namely the training of young scientists in animal cell technology.

Paula was elected member of the National Academy of Engineering (USA) in 2021 for her leadership in biomanufacturing, advanced biotherapeutics, and bridging the gap between academia and industry. She received the Scientific Merit Award from NOVA University of Lisbon in 2009.

ESACT **GRANTS**

ESACT Grants are intended to support young scientists to participate in scientific conferences to present research and results related to animal cell technology. Grants can also be given to support attendance at courses or short research based internships.

- Grants are open to all ESACT members
- Grants provide fixed rate contribution to travel to attend conferences not organised by ESACT
- Grants are for early career Researchers & Post Docs within 2 years of graduation

APPLY FOR AN ESACT GRANT

All the ESACT Grant application criteria and requirements, along with the simple online application are available by either visiting ESACT.org or scanning the QR code below on your mobile phone.

© 2024 Beckman Coulter, Inc. All rights reserved. Beckman Coulter, the stylized logo, and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are property of their respective owners.

For Beckman Coulter's worldwide office locations and phone numbers, please visit Contact Us at beckman.com
SUNDAY 23		
10:00 - 21:00	Registration (open all day)	
11:00 - 12:30	Academic Workshops	
12:30 - 13:30	Lunch, Networking & Connect by ESACT Frontiers	
13:30 - 15:00	Sponsored Symposia	
15:00 - 16:30	Academic Workshops	
16:30 - 17:00	Networking	
17:00 - 18:30	Opening Session & ESACT Innovation Award Lecture	
18:30 - 19:15	Prof Charlie Gourley Impact of biological therapeutics: perspective of the cancer clinician and the cancer patient	
19:15 - 21:00	Exhibitors Reception	

MONDAY 24		
08:00 - 21:00	Registration (open all day)	
08:45 - 09:30	Prof Sir David MacMillan Micromapping: A chemical approach to biological insights and therapeutic intervention	
09:30 - 10:00	Innovate or Die – New Technologies	
10:00 - 11:00	Morning Refreshment Break, Networking and Industry Educational Sessions	
11:00 - 12:30	Cells as Factories and Therapies	
12:30 - 14:15	Lunch, Networking and Industry Educational Sessions	
14:15 - 15:45	Poster Session 1	
15:45 - 17:15	Product Quality – Relevance and Assessment	
17:15 - 17:30	Afternoon Refreshment Break, Networking and	
17:30 - 18:00	Industry Educational Sessions	
18:00 - 19:30	Transitioning from Development to Manufacture	
19:30 - 21:00	Poster Session 2 & Networking	
21:00 - 23:00	Pub Quiz	

TUESDAY 25		
08:00 - 17:30	Registration (open all day)	
08:45 - 09:30	Prof Sir Adrian Bird Towards genetic therapies for Rett syndrome	
09:30 - 10:00	Innovate or Die – New Technologies	
10:00 - 11:00	Morning Refreshment Break, Networking and Industry Educational Sessions	
11:00 - 12:30	From Big Data to Better Cells and Processes	
12:30 - 14:30	Lunch, Networking and Industry Educational Sessions	
14:30 - 16:00	Poster Session 3	
16:00 - 17:30	Cells as Factories and Therapies	
17:30 - 20:00	"Networking activity: Sights and sounds of Edinburgh"	
20:00 - 23:00	Dinner at Conference Venue	

WEDNESDAY 26			
08:00 - 16:45	Registration (open all day)		
08:45 - 09:30	Dr Marinna Madrid An Al- and Laser-based Biomanufacturing Platform to Scale Production of Personalized Regenerative Cell Therapies		
09:30 - 10:00	Poster Flashes Top 10		
10:00 - 11:15	ESACT General Assembly	Morning Refreshment Break, Networking and Industry Educational Sessions	
11:15 - 12:45	Product Quality – Relevance and Assessment		
12:45 - 14:00	Lunch, Networking and Industry Educational Sessions		
14:00 - 15:30	Transitioning from development to manufacture		
15:30 - 16:15	Prof Alois Jungbauer Environmental Footprint of Biomanufacturing: strategies for sustainability		
16:15 - 16:45	Closing Ceremony Awards		
19:00 - 02:00	ESACT 2024 Congress Dinner		

Sunday 23 June 2024

11:00 - 12:30

Room: Kilsyth

Addressing the challenges of multi-specific biotherapeutic development Organised by Dr Sarah Dunn, AstraZeneca and Dr Chris Sellick, Sanofi Sponsored by AstraZeneca

Multispecific antibodies are a growing class of biotherapeutic with over 140 different molecules currently in clinical testing. They provide distinct AstraZeneca advantages over monoclonal antibodies in their ability

to bind to and engage multiple target proteins. Their use is most evident in oncology where a target specific antigen binding domain can be coupled with an immune effector cell binding domain to directly activate the immune system within the tumour microenvironment for enhanced therapeutic effect.

Despite the therapeutic potential of multispecific antibody formats the manufacture of these novel molecules can present significant challenges- they often express at low levels, can generate a range of different product related impurities which are difficult to purify and are challenging to characterise.

Format of the workshop:

This workshop will focus on the development and manufacturability of multispecifics. We will first introduce the wide range of different multispecifc antibody formats that are currently in clinical trials. We will then present some case studies to examine how standard cell line development and analytical pipelines have been modified to better suit multispecific production. In the second part of the workshop we invite participants to join working groups to discuss the opportunities and challenges related to the successful molecular design, production and characterisation of these complex biotherapeutics.

Chairs: Chris and Sarah

- 1. Chair introduction to Multispecifics: Chris and Sarah
- 2. Case studies highlighting challenges faced with specific industrially relevant molecules
- 3. Working group discussion focusing on approaches that may:
 - Enhance design for improved developability
 - Improve the production process
 - Develop high throughput tools to better characterize multispecifics
- 4. Wrap up

Sunday 23 June 2024

11:00 - 12:30

Room: Moorfoot

From Lab to Industry: Enable quality by control through automation, AI and computational fluid dynamics

Organised by Dr Wolfgang Sommeregger, QUBICON AG, Dr Mark Duerkop, Novasign GmbH and Dr Christian Witz, SimVantage GmbH

This workshop addresses the challenges and benefits of transferring learnings from laboratory experiments to manufacturing processes, specifically focusing on overcoming scale-up issues and implementing automated and advanced process control. It highlights the scarcity of FDA-approved products in the biotech industry that are manufactured using completely automated processes and proposes potential solutions. The goal of the session is to demonstrate how these integrated strategies can facilitate in-silico optimization and scale-up, alongside prospects for fully automated process control. Digital technologies already accelerate the development and scale-up of cell culture processes today. However, so far, mostly encapsulated areas have been looked at and attempted to be optimized. In this workshop we try to establish a connection between digital technologies such as streamlined data acquisition from Design of Experiments, hybrid modelling and computational fluid dynamics to transfer as much as possible from the learnings of laboratory scale into production. Participants will get an idea of how digital techniques can be interlinked to accelerate process development. Additionally, in-depth discussions are planned regarding the reasons behind the current underutilization of these solutions.

Format of the workshop:

Additional speakers are: Mark Duerkop, Novasign GmbH, Vienna, Austria and Christian Witz, SimVantage GmbH, Graz, Austria

1. Lab Scale – Process Understanding and Data Aggregation

Attendees will discover methods for digital transformation in lab and production settings, focusing on the integration of data from diverse analytical and processing equipment. Furthermore, the workshop will showcase workflows designed to accelerate learning from experiments, highlighting the principles of model-based and intensified Design of Experiments. Additionally, the integration of Computational Fluid Dynamics (CFD) results, derived from an innovative solver adds a deeper understanding of the reactor characteristics.

2. Scale-Up with Process Know-How from the Lab

Enhancing process understanding together with the in-depth equipment characterization is crucial for automating process controls, optimizing production conditions, and ensuring consistent quality during the scale-up from laboratory to industrial scale. It allows for the identification and mitigation of potential scale-up issues before they occur, reducing development time and costs.

3. Large scale production – Automation, Process Optimization and Process Transfer

After successful scale-up, advanced process control should ensure consistent and cost-effective production. At its heart a digital twin, trained from reactor geometries and experimental data during late-stage development and scaleup, will allow to autonomously control the process inside certain boundaries. Therefore, the understanding of quality by design will be transformed into quality by control.

Sunday 23 June 2024

11:00 - 12:30

Room: Tinto

PAT implementation in development and biomanufacturing *Organised by ACTIP – Advanced Cell Technology Industrial Platform*

ACTIP is an independent non-profit association of European companies and institutions engaged in the industrial use of advanced cell technology for research, development and/or production of biopharmaceuticals, vaccines and other preventative or therapeutic approaches. Its main objectives are to bring advanced cell technology experts together for networking, keeping up to date on cutting-edge developments and focus on technological and appliedoriented challenges for the industrial use of advanced cell technology.

ACTIP welcomes participants to a symposium dedicated to the latest trends in process analytical technologies (PAT) for bioprocess development and manufacturing. Short 10-minute introductory presentations followed by 5 minutes of Q&A will set the stage and provide insights into some of the concepts which shape the biologics and gene & cell therapy industry today. The program will cover aspects such as real-time product quality and process monitoring, application of multi-attribute methods for process and product

characterization, platform and automation methods to support accelerated programs and hybrid modeling for PAT implementation. The presentations will be followed by a discussion, which will allow participants and experts to interact and exchange on these topics.

Format of the workshop

Chairs: Dr Erwin van Vliet (ACTIP, The Netherlands), Dr Jonathan Bones (NIBRT, Ireland), Dr Jochen Sieck (Merck Life Science, Germany)

- 11:00 11:05 Welcome & Introduction of ACTIP
- 11:05 11:20 PAT for Cell and Gene Therapy: A Call to Arms James Piret, University of British Columbia, Canada
- 11:20 11:35 PAT for cell therapy development at Bayer Jens Traenkle, Bayer, Germany
- 11:35 11:50 Innovations in In-Line Monitoring: Raman Transfer in mAb Production & Glycosylation Profiling? Fabien Caron, Merck Life Science, France
- 11:50 12:05 Real-time process control and continuous product characterization platform through automated high frequency sampling from multiple bioreactor systems Noemí Dorival-García, NIBRT, Ireland
- 12:05 12:20 Hybrid modeling a versatile tool in context with PAT implementation Gerald Striedner, University of Natural Resources and Life Science Vienna B.O.K.U., Austria
- 12:20 12:30 Discussion & Wrap up

SPONSORED SYMPOSIA

Sunday 23 June 2024

13:30 - 15:00

Room: Tinto

Case Study on N-1 Perfusion Development by Fresenius Kabi and Related Innovations in Perfusion Technology for Cell Retention and Cell Line Development by Merck Sponsored by Merck

When N-stage perfusion is not a viable option from cost perspective, N-stage intensification is a great opportunity for time and cost reduction. This often requires the use of N-1 perfusion to build up sufficient biomass for the intensified

fed-batch phase. We will present the work performed to develop this N-1 stage at Fresenius Kabi to enable future N-intensified process development.

Successful implementation of perfusion relies on robust and scalable cell retention technology. The Cellicon® Perfusion Solution meets this need by providing flat-sheet filters designed for cells, in a single-use assembly for seamless process control. We will share data demonstrating this technology in perfusion applications to quantify process improvements.

During CLD for perfusion bioprocesses, it is essential to select clones that demonstrate high qP, moderate growth rates, and high titer. Traditional CLD methods may identify clones that perform well in fed-batch but miss the best perfusion clones. We will highlight advantages of using perfusion-specific CLD processes to create more productive clones and provide an integrated CLD solution for intensified processing using CHOZN® GS-/-, best-in-class media, and the Mobius® Breez Microbioreactor.

Live Q&A session to follow the presentations.

Moderator:

Jennifer Campbell, Upstream Technical Specialist, Process Solutions, Merck

Speakers:

Camille Payre, Upstream Process Development Senior Scientist, Fresenius Kabi SwissBioSim GmbH Geraldine Contrufo, Senior Biomanufacturing Engineer, Upstream MSAT EMEA, Merck David S. Razafsky, Ph.D., R&D Manager, Biopharmaceutical Expressions System Team, Merck

SPONSORED SYMPOSIA

Sunday 23 June 2024

13:30 - 15:00

Room: Kilsyth

Driving Performance, Scalability, and a Simplified Path to Cell & Gene Therapy Commercialization Sponsored by Sartorius

The ability of cell and gene therapies to improve patient lives has been clearly demonstrated with the successful approval of over 65 products globally. In 2023 alone we

SVILCTEV3

saw 6 approvals for gene and gene-modified cell therapies, signaling rapid growth and a promising future. These clinical successes motivate therapy developers to hasten market entry, yet the challenge remains to develop high-quality, safe products with reduced cost per dose. The industry is actively looking for more effective development processes—processes built to consistently perform, seamlessly scale, and adhere to complex and evolving regulatory requirements. These factors set the stage for a simplified path to commercialization, but how can early-stage developers balance today's demands while getting prepared for future clinical success? In this workshop, hear from a diverse panel of experts from across industry—from University to CDMO—on the novel approaches and innovative technologies that are pushing the boundaries of CGT development and manufacturing to drive performance, scalability, and regulatory compliance. Following short individual presentations, our distinguished speakers will gather to discuss key challenges, considerations, and the future outlook on this dynamic field.

Moderator:

Lorraine Borland, Senior Expert Bioprocess Solutions, Cell & Gene, Sartorius

Speakers:

Pierre Springuel, PBioChemEng PhD Candidate, University College London Klaus Graumann, CEO Phoenestra GmbH Ahmed Youssef, Senior Manager USP, Ascend Advanced Therapies Harm Niederländer, Platform Development Specialist, Sartorius

Sunday 23 June 2024 15

15:00 - 16:30

Room: Kilsyth

Transitioning Advanced Therapies from Research to Development and Manufacturing - What Have We Learned About Developability? Organised by Dr Till Wenger, Boehringer Ingelheim Pharma and Dr Simon Fischer, Boehringer Ingelheim Pharma

Advanced therapeutic medicinal products (ATMPs) used for cell and gene therapy applications are an emerging class of biopharmaceuticals with the potential to become curative treatments for diseases that were considered untreatable so far. These novel modalities are amongst the most complex biological formats found under clinical development and rely on animal cell technology. In contrast to the more established protein-based therapeutics, prior knowledge about development and manufacturing is still scarce, making the transition from research to development and manufacturing more cumbersome. In this workshop, we propose to bring together experts from research and development working on these novel modalities to discuss about how ATMP products can be designed to function as efficient and safe drugs, and how advancements and challenges in the development of these novel products can be overcome in the future.

ATMPs represent a fast-growing novel class of biopharmaceuticals and their manufacturing is highly dependent on animal cell derived expression systems. While ATMP research at academic institutions has been carried out for many years, an increasing number of small and large biopharmaceutical companies have only recently stepped in to the development of ATMP products. Consequently, regarding clinical development and manufacturing this field is still in its infancy. In recent years, also the ESACT community has faced a growing interest in topics related to ATMPs and therefore this workshop is intended to bring together experts from academia and industry to streamline the development of innovative ATMP products in the future.

Format of the workshop:

- 1. Introductory comments by the session chairs Till Wenger and Simon Fischer
- 2. Overview presentations on various topics on ATMP developability

- Dr Markus Hoerer, Ascend Gene & Cell Therapies, Germany CMC stumbling blocks that need to be removed at an early stage in the development of AAV gene therapeutics
- Dr Marie Clincke, UCB Pharma, Belgium Efficient development of rAAV manufacturing process through integrated CMC development with the end in mind
- Dr Raphael Drerup, Boehringer Ingelheim Viral Therapeutics Center, Germany
 The power of a platform: accelerating the development of an oncolytic virus
- Dr Oliver Kraemer, Flagship Pioneering, USA Navigating the shift from research to development in advanced therapies: Understanding the critical impact of early CMC decisions on the success of ATMPs
- 3. Interactive speaker panel and audience discussion moderated by the session chair

Sunday 23 June 2024 15:00 – 16:30

Room: Moorfoot

Cultivated meat – A new frontier in animal cell technology Organised by Dr Jonathan Dempsey, Pathway Biopharma

The science of producing meat using cell culture has generated enormous interest since the first burger was grown in a lab over ten years ago. Many of the skills needed to produce cultivated meat are already found in our scientific community. Bioprocessing, cell therapy and regenerative medicine provide the starting point for designing cultivated meat processes but there are many new challenges in making this industry a success. Scale and cost are the most pressing challenges as are the development of suitable cell lines, culture medium and large-scale bioreactors. We aim to present the science

behind solving these challenges from leading cultivated meat developers and technology providers.

This field will require the skills and knowledge of the ESACT community. It also provides new opportunities for scientist at all points in their career. Cultivated meat presents a huge moral opportunity to address the key challenges facing humanity, with solutions that our community are key to solving.

Format of the workshop:

- 1. Welcome and Introduction (Jonathan Dempsey, Pathway Biopharma)
- 2. Cultivated meat is not too big a bite Ricardo Gouveia, CSO + co-Founder, 3D Bio-Tissues Ltd
- 3. Continuous Bioprocess of C2C12 Muscle Cells A Proof of Concept Martina Miotto, CSO and Co-founder CellRev.
- 4. Poster Flashes, Livestock Pluripotent Stem Cells for Cultivated Meat, Roslin Technologies.
 - a. Well-Characterised Porcine iPSCs and c-Myc quantification for cultivated meat applications (Madeleine Carter).
 - b. Getting Fat: Adipogenesis of Pluripotent Stem Cells in Livestock Species for Cultivated Meat (Sarah Ho).
 - c. Well Characterised Panel Of Bovine ESCs Embryonic Stem Cells for the Cultivated Meat Applications Industry (Niamh Hyland).
- 4. Panel Discussion, Jon, Martina, Simon Best (Board Director, Roslin Technologies) Madeleine, Niamh, Sarah and Ricardo.

Sunday 23 June 2024

15:00 - 16:30

Room: Tinto

Sustainability in biomanufacturing Organised by Dr Prof Alois Jungbauer, University of Natural Resources and Life Sciences Vienna

The impact of bioprocessing on the environment is often neglected or even ignored because it is believed that the social impact of modern medicine relieves scientists of the obligation to implement sustainability in their products and processes. In this workshop we aim to raise awareness of the environmental impact of modern bioprocesses for the production of drugs from mammalian cells.

The ESACT community is highly involved in development of bioprocesses in biopharma to reliably deliver drugs in a relatively short time frame with high quality within a tight regulatory framework. Bioprocesses are highly complex, the level of automation is moderate, and there is constant pressure to improve efficiency and costs. In addition, climate change and resource scarcity require a reduction in the environmental footprint of bioprocesses and manufacturing facilities. The global environmental impact of the entire healthcare industry is completely ignored due to the positive impact it has on our daily lives, especially extending life expectancy without disability.

Format of the workshop:

We will address following topics/questions in an interactive format:

- 1. Metrics for assessing the environmental footprint of a bioprocess.
- 2. Metrics for assessing the societal impact of biopharmaceuticals.
- 3. How to improve the environmental footprint, batch, fedbatch, intensified and continuous integrated bioprocesses.
- 4. Circular bioeconomy exemplified by waste stream management for single-use technologies

Personalized Solutions for Your Cell Culture Media

Bring Your Therapies to Life with Our Custom Media Services

FUJIFILM Irvine Scientific provides a suite of cell culture media services for early and late stage development of biologics manufacturing and cell and gene therapy. From developing new media, through optimizing existing formulas, to manufacturing prototype and small scale lots of media, we support your process development at every step.

- Customize your media with our Media Development and Optimization service
- Scale-up your manufacturing with our Express Media Service
- Optimize your media workflow with our Manufacturing Science and Technology
- Discover your media's shelf-life potential with our stability studies

For more information, reach out to your local sales representative or visit our website.

www.irvinesci.com

SUNDAY 23

Pentland Auditorium

17:00 – 17:45 **ESACT 2024 Opening Session** Prof Alan Dickson, The University of Manchester

ESACT Innovation Award Lecture

 Session Chair: Prof Eleftherios (Terry) Papoutsakis, University of Delaware
The ESACT Innovation Award for 2024 will be presented (as a Group Award) to The International CHO GENOME
Community for transforming of biopharmaceutical
manufacturing through collaboration and sharing of genomic and associated knowledge that benefits industry and enhances patient access to high quality medicines.

Presenter: Prof Michael Betenbaugh, Johns Hopkins WSE

Other Key Members of the Group: Prof Kelvin H. Lee, Prof Nathan Lewis and Prof Nicole Borth

Keynote Lecture

Session Chair: Prof Nicole Borth, BOKU

18:30 – 19:15 Impact of biological therapeutics: perspective of the cancer clinician and the cancer patient
Prof Charlie Gourley, The University of Edinburgh

19:15 – 21:00 Exhibitors Reception in the Exhibition Halls

MONDAY 24

Pentland Auditorium

08:45 - 09:30	Keynote Lectur Session Chair: I Ireland Micromapping insights and the Prof Sir David M	re Prof Mark Smales, University of Kent/NIBRT g: A chemical approach to biological herapeutic intervention MacMillan, Princeton
09:30 – 10:00	Innovate or Di Session Chair: I	ie – New Technologies Dr Till Wenger, Boehringer Ingelheim
09:30 -	09:38	Confined bioprinting in inflatable bioreactor: toward the sterile bioproduction of tissues and organs Dr Christophe Marquette, 3d.FAB - University Lyon 1
09:38 -	09:46	Morphological profiling of senescent cells for label-free quality control of mesenchymal stem cells Kenjiro Tanaka, Nagoya University
09:46 -	09:54	From Moonshot to One-Pot: A New Paradigm for Multispecifics Manufacturing Dr Guogang Dong, Pfizer

MONDAY 24		
09:54 -	- 10:00	Q&A with Panel
10:00 – 11:00	Refreshment Sessions in Ex	Break, Networking & Industry Educational chibition Halls
11:00 - 12:30	Cells as Facto Session Chairs Barron, UCD a	ries and Therapies : Dr Christina Alves, Takeda and Prof Niall and NIBRT
11:00 -	- 11:30	The Sleeping Beauty transposon system: A molecular parasite tamed for genome engineering Prof Zoltan Ivics, University of Leipzig
11:30 -	- 11:40	Deciphering key adenoviral elements in the production of recombinant AAV vectors Dr Sofia Fernandes, iBET
11:40 -	- 11:50	Trigger-induced drug release from particle-loaded macrophages Dr Omkar Desai, Helmholtz Centre For Infection Research

		MONDAY 24
11:50 -	- 12:00	Complementary Gene Editing Technologies Enhance Rapid Generation of Stable Cell Lines Producing Enveloped Viral-Like Particles Dr Corey Brizzee, Demeetra Agbio
12:00 -	- 12:30	Evolving CAR cell Therapies Dr Isabelle Riviere, Takeda
12:30 - 14:15	Lunch, Netwo Exhibition Ha	orking & Industry Educational Sessions in lls
14:15 - 15:45	Poster Sessio	n 1 in Exhibition Halls
15:45 – 17:15	Product Quali Session Chairs Bondgaard Tol	ity – Relevance and Assessment : Dr Chetan Goudar, Amgen and Dr Anne strup, AbtBioConsult
15:45 -	- 16:15	Control and Characterization of Thousands-Diverse Recombinant Polyclonal Antibodies Rena Mizrahi, GigaGen
16:15 -	- 16:30	Product Quality Control through Raman Spectroscopy Prof Thomas Villiger, University of Applied Sciences Northwestern Switzerland

MONDAY 24

16:30 -	16:45	Unveiling mAbs & viral vectors´ attributes by Mass Spectrometry-based advanced bioanalytics Dr Sofia B Carvalho, iBET
16:45 -	17:00	Novel analytics for cell and gene therapy manufacturing Dr Stacy Springs, MIT
17:00 -	17:15	Using high-throughput sequencing to identify IgG sequence variants and the molecular mechanism for their occurrence Dr Claire Harris, AstraZeneca
17:15 – 18:00	Refreshment Sessions in Ex	Break, Networking & Industry Educational hibition Halls
18:00 – 19:30	Transitioning Session Chairs Alicia Palomare	from Development to Manufacture : Dr Andreas Castan, Cytiva and Prof Laura es Aguilera, IBT-UNAM
18:00 -	18:30	Developing and manufacturing CRISPR- engineered T cell therapies in the academic setting Dr Brian Shy, University of California, San Francisco

MONDAY 24

18:30 -	- 18:40	Improvement of USP for biopharmaceutica processes: A case stu Dr Timm Keil, Boehring GmbH & Co. KG	scale-down models al production dy ger Ingelheim Pharma
18:40 -	· 18:50	"Organized stress" fo intensified process w seed bioreactor Antoine Piednoir, UCB Alleud	r robust scale-up of r ith non-perfusion Pharma S.A. Braine-
18:50 -	· 19:00	Mimicking Impacts of Heterogeneous Mixir Performance Using th Compartment Biorea Ralf Takors, University of Biochemical Engined	f Production Scale ng on Cellular he Single Multi- of Stuttgart, Institute ering
19:00 -	19:30	Scaling-up Covid vaco Combating the pande Prof Catherine Green,	:ine manufacture: emic University of Oxford
19:30 – 21:00	Poster Session	n 2 & Networking in Ex	hibition Halls
21:00 - 23:00	Pub Quiz at M Sponsored by E	l alones Edinburgh vonik	

TUESDAY 25

Pentland Auditorium

08:45 - 09:30	Keynote Lectu Session Chair: Manchester Towards gene Prof Adrian Bir	ure Prof Alan Dickson, The University of e tic therapies for Rett syndrome rd, University of Edinburgh
09:30 - 10:00	Innovate or D Session Chair:	ie – New Technologies Dr Stefanos Grammatikos, UCB
09:30 -	- 09:38	Enabling the intensification of cell culture processes by using modified amino acids Aline Zimmer, Merck Life Science Kgaa
09:38 -	- 09:46	Microfluidic Device for the Expansion of T Cells under Continuous Perfusion Jorge Aranda-Hernandez, UCL
09:46 -	- 09:54	Integration of stem cell-derived pancreatic aggregates into FN-silk network for in vitro maturation Kelly Blust, KTH Royal Institute of Technology
09:54 -	- 10:00	Q&A with Panel

TUESDAY 25		
10:00 – 11:00	Refreshment Sessions in Ex	Break, Networking & Industry Educational chibition Halls
11:00 – 12:30	From Big Data Session Chairs and Dr Simon	a to Better Cells and Processes : Prof Mike Betenbaugh, Johns Hopkins WSE Fischer, Boehringer Ingelheim
11:00 -	- 11:30	4D simulations of a growing minimal bacterial cell Prof Zaida Ann Luthey-Schulten, University of Illinois
11:30 -	- 11:40	miRNome analysis of HEK293-F cells during AAV production Madina Burkhart, Biberach University of Applied Sciences
11:40 -	- 11:50	Culture media customization to the target molecule using hybrid AI systems Prof Rui Oliveira, Nova University Lisbon
11:50 -	- 12:00	In Silico Modelling for Bioprocesses: An Epigenetic and Machine Learning Approach Dr Karlheinz Landauer, Qbdc Gmbh

TUESDAY 25

12:00 -	- 12:30	Towards digital process development - How (hybrid) modeling and transfer learning could change the way we develop and operate processes Dr Moritz von Stosch, DataHow
12:30 - 14:30	Lunch, Netwo Exhibition Ha	orking & Industry Educational Sessions in lls
14:30 - 16:00	Poster Session	n 3 in Exhibition Halls
16:00 – 17:30	Cells as Facto Session Chairs Barron, UCD a	ries and Therapies : Dr Christina Alves, Takeda and Prof Niall nd NIBRT
16:00 -	- 16:30	Precision gene delivery through protein engineering Prof Andreas Pluckthun, University of Zurich
16:30 -	- 16:40	The serendipitous discovery of a novel and highly efficient transposase to advance mammalian cell factories Dr Moritz Schmidt, Boehringer Ingelheim
16:40 -	- 16:50	Model-driven Synthetic Biology Approaches to Engineer Improved Stable Cell Lines for Lentivirus Manufacturing Dr Brianna Jayanthi, Asimov, Inc.

TUESDAY 25

17:00 - 17:10A large-scale deletion screen defines the essentiality of the "dark matter" of the CHO genome Federico De Marco, ACIB Austrian Centre of Industrial Biotechnology17:10 - 17:20A Novel Cell Engineering Platform for High-Yield AAV Production and Improved Manufacturability
17:10 – 17:20 A Novel Cell Engineering Platform for High-Yield AAV Production and Improved Manufacturability
Dr Kathy Ngo, CHO Plus, Inc.
Cord blood natural killer cells: a promising source of cytotoxic17:20 - 17:30extracellular vesicles for cancer immunotherapy Isabel Doutor, IST - IBB
17:30 – 20:00 Sights and Sounds of Edinburgh

20:00 – 23:00 ESACT 2024 Tuesday Dinner at EICC

WEDNESDAY 26

Pentland Auditorium

08:45 - 09:30	Keynote Lecture Session Chair: Prof Paula Alves, iBET and ITQB NOVA An Al- and Laser-based Biomanufacturing Platform to Scale Production of Personalized Regenerative Cell Therapies Dr Marinna Madrid, Cellino
09:30 - 10:00	Poster Flashes Top 10
10:00 – 11:15	ESACT General Assembly
10:00 – 11:15	Refreshment Break & Networking in Exhibition Halls
11:15 - 12:45	Product Quality – Relevance and Assessment Session Chairs: Dr Chetan Goudar, Amgen and Dr Anne Bondgaard Tolstrup, AbtBioConsult
11:15 -	11:45 Process Analytical Utility of Raman Microscopy for Cell Therapy Manufacturing Dr James Piret, UBC

WEDNESDAY 26

11:45 -	- 11:55	Assessing Extractables and Leachables from Single-Use Systems used in Advanced Therapy Medicinal Product Production Dr Roberto Menzel, Sartorius Stedim Biotech
11:55 -	- 12:05	Identification and Characterization of CHO Host Cell Proteins that can Degrade Polysorbate in Drug Products Dr Inn Yuk, Genentech
12:05 -	- 12:15	How to address challenges in characterization and modeling of CD markers in MSCs? Jean-françois Michiels, Pharmalex
12:15 -	- 12:45	Making Analytical Characterisation Routine Dr Jonathan Bones, NIBRT
12:45 - 14:00	Lunch & Netw	vorking in Exhibition Halls
14:00 – 15:30	Transitioning Session Chairs Alicia Palomare	from development to manufacture : Dr Andreas Castan, Cytiva and Prof Laura es Aguilera, IBT-UNAM

WEDNESDAY 26

14:00 - 14:30	Mitigating risk during biologics manufacturing using discovery stage developability assays and state of the art machine learning based optimization Dr Jyothsna Viswesvaraiah, Seismic Therapeutic
14:30 – 14:42	Safe and economic clinical manufacturing of arenavirus-based immuno-virotherapies: challenges and solutions Dr Binod Prasad, Abalos Therapeutics GmbH
14:42 – 14:54	High-Throughput Virology and Design of Experiment for Rapid Vector Production Process Optimization Andrea Vervoort, Virica Biotech
14:54 – 15:06	End-to-end CHO Platform Across Research, PD and Manufacturing to Efficiently Identify Molecules with High Yield Dr Natalia Gomez, Amgen

WEDNESDAY 26

15:06 – 15:18	Utilizing oxygen transfer rate monitoring to transfer cell cultures from microtiter plates to stirred-tank reactors Anne Neuß, RWTH Aachen University - AVT. BioVT
15:18 – 15:30	Towards Scalable Allogeneic CAR-T Manufacturing: Perfusion Optimisation and Multi-litre Scale-up in Single-use Stirred-tank Bioreactors Pierre Springuel, University College London

Keynote Lecture

Session Chair: Dr Stefanos Grammatikos, UCB 15:30 – 16:15 **Environmental Footprint of Biomanufacturing:** strategies for sustainability Prof Alois Jungbauer, BOKU University

- 16:15 16:45 Closing Ceremony Awards
- 19:00 02:00 ESACT 2024 Congress Dinner at National Museum of Scotland

Monday 24 June 2024

10:20 - 10:50

Room: Lammermuir 1

Next top model: in silico design, scalability, and optimization of a bioreactor platform *Sponsored by Cytiva*

In this session, we discuss the theory of bioreactor scaling and strategies for in silico bioreactor design. We'll also show how we developed a new bioreactor platform using data from computational fluid dynamics (CFD) calculations, physical characterization, and cell culture runs.

Speaker: Neil Ross - Senior Global Product Marketing Manager, Cytiva / Will Scott-Dunn - Senior Product Manager, Upstream in Silico PD

Monday 24 June 2024

10:20 - 10:50

Room: Lammermuir 2

Ask the experts: Revolutionizing Cell and Gene Therapy Development and Downstream Processing from Bench to Industry Sponsored by Eppendorf Bioprocess

Exosomes, and more specifically stem cell-derived exosomes, are of great interest as cell-free therapeutic tools due to their strong diagnostic and therapeutical potential in various diseases models including skin, nervous system, heart, liver, and kidney. However, to

explore the use of exosomes in the different biomedical areas, large amounts of high-quality exosomes need to be produced.

Speakers: Dr Pascal Rowart Application Specialist EAT Cell and Molecular Biology and Dr Philipp Nold Business Development Manager CGT

Monday 24 June 2024

12:50 - 13:50

Room: Lammermuir 1

Simple and readily deployable Process Analytical Technology (PAT) solutions for comprehensive monitoring and analysis of upstream monoclonal antibody production *Sponsored by 908 Devices*

Robust and informative PAT solutions supporting upstream production of biopharmaceutics are required to improve efficiency. Despite considerable interest in spectroscopic in-line techniques like Raman, the obstacles associated with constructing and

%908 devices

validating models have impeded their widespread adoption. The deployment of specific methods that provide quantitative information on individual process components or product quality attributes is still challenging. Process analytics that provide direct quantitative readouts enable better process understanding, improvements, and modelling, as well as building and validating additional spectroscopy chemometric models.

Speakers: Milla Neffling, PhD, 908 Devices / Steve Driscoll, PhD, 908 Devices / Jonathan Bones, PhD MBA, National Institute for Bioprocessing Research and Training

Monday 24 June 2024

12:35 - 13:05

Room: Lammermuir 2

Harnessing the Power of the Beacon® Platform to Advance Cell Therapies and Accelerate Cell Line Development Workflows Sponsored by Bruker

The revolution in life science research is focused on understanding the function of single cells, which is essential for developing new therapies. Traditional methods like FACS and scRNASeq provide only partial insights into cellular behavior. Bruker's Beacon® Optofluidic system

offers a comprehensive approach, delivering a complete picture of single-cell function. The Beacon enables serial multi-modal analysis and real-time imaging of the same live cell and its progeny, allowing simultaneous measurement of thousands of single cells or colonies. This platform integrates two advanced technologies:

- 1. Light-driven Optoelectronic Positioning (OEP) gently controls single cells and beads, facilitating customized experiments without harming the cells.
- 2. A microfluidic chip with NanoPen® chambers ensures continuous media and assay reagent flow, enabling dynamic cellular biology studies over time with a high-resolution microscope.

This powerful technology has propelled advancements in cell line development (CLD) using Bruker's Opto CLD workflow on the Beacon platform. Typically, CLD campaigns demand extensive technical and resource investments, requiring repeated cell function assessments of candidate clones over several months using various methods to select lead clones for cell banking. The Beacon platform streamlines these measurements, enabling them to be conducted at the earliest stages of a CLD campaign, meaningfully accelerating clone selection. For instance, productivity and quality measurements can be performed within days of single cell cloning (SCC), and stability measurements within the first 4-6 weeks of SCC. Here, we present the principles underpinning these substantial advancements and discuss the outcomes they enable for CLD practitioners utilizing the Beacon platform.

Monday 24 June 2024

13:10 - 13:40

Room: Lammermuir 2

Scale-up from flask through 50L Bioreactor – the effect of Gibco Media on maximizing performance and quality in fed-batch and perfusion processes Sponsored by Thermo Fisher Scientific

sponsored by menno fisher scientific

Thermo Fisher Scientific[™] and their collaborative research with Zurich University of Applied Sciences dives into the forefront of advancing CHO cell culture processes. We address the complexities of scale-up and process development while conducting comparisons

of fed-batch and perfusion strategies. Leveraging Gibco[™] catalog media and feeds, coupled with automated glucose control, we ensure the nutrient requirements for high viability and cell density from benchtop to pilot. Utilizing diverse bioreactor technologies, we demonstrate the seamless scalability of our methodologies.

Speaker: Vivian Ott, M.Sc., ZHAW Zurich University of Applied Sciences

Monday 24 June 2024

13:45 - 14:15

Room: Lammermuir 1

The Future of Media Hydration - Balanced media in automated single use platforms Sponsored by FUJIFILM Irvine Scientific

While maintaining a strong and robust supply chain, biomanufacturers are looking to maximize facility utilization and increase process efficiency to drive down the cost of goods, without compromising the quality of the final product. To move away from conventional mixer

technology for media hydration and automate the process, FUJIFILM Irvine Scientific has developed a new platform technology that can rapidly and consistently hydrate media, feeds and buffers. This platform optimizes and balances powdered media to achieve a more efficient automated on demand hydration system versus conventional mixing. Learn more about our latest bioprocessing solutions for process development and manufacturing, in the upstream and downstream environment, across multiple modalities.

PN 019847 Rev.00

Speaker: Guy Matthews, FUJIFILM Irvine Scientific

Monday 24 June 2024

14:00 - 14:15

Room: Lammermuir 1

C.STATION: End-to-end automation for generating stable cell lines for the development of advanced therapeutics *Sponsored by CYTENA*

Revolutionize cell line development (CLD) workflows with CYTENA's C.STATION. This turnkey automated solution offers efficient single cell isolation, documented clonality assurance, high producer/high-quality clone enrichment, increased throughput, process consistency,

and improved data traceability and integrity. It is tailored and configured with the best-in-class instruments and software for monoclonal antibody development, viral vector production, and iPSCs for cell therapy. Join us to explore its transformative impact and discover the future of CLD.

Speaker: Mike Helme, Senior Sales Specialist Biopharma UK/Ire/Nordics, CYTENA

Monday 24 June 2024

17:30 - 18:00

Room: Lammermuir 1

Galactose and Mannose Supplementation in Cell Culture - Glycoform Modulation and Other Considerations Sponsored by Pfanstiehl

Galactose and Mannose are two important carbohydrates that are widely used as cell culture media supplements for recombinant protein production (Innovator protein therapeutics,

Biosimilars, Biobetters etc.) and other applications. Galactose not only plays important role in protein Glycoform modulation but also aids in Cellular energy production, Synthesis of Glycoproteins and Glycolipids and Energy storage. Similarly, Mannose plays important role in Glycoform modulation, energy production and signal transduction. Purity and quality are two very important aspects that must be considered when choosing the cell culture media supplements. Contamination of cell culture media supplements with heavy metals can significantly impact cell growth and function. Metals/Elemental Impurities can enter cell culture media through various sources, including the raw materials used to manufacture the media. Therefore, it is of paramount importance to use highly pure, well characterized, and low metal containing supplements (including Galactose and Mannose) in cell culture applications. In this presentation, I will present case studies demonstrating the importance of Galactose and Mannose supplementation in Cell Culture and talk about Pfanstiehl high purity, low endotoxin and low metal Galactose and Mannose offerings.

Speaker: Dr Christian Lotz, Pfanstiehl

Monday 24 June 2024

17:30 - 18:00

Room: Lammermuir 2

Assurance of monoclonality in mammalian cell line development through the combination of state-of-the-art single-cell deposition and high-fidelity imaging technologies Sponsored by Seed Biosciences

In recent years, the advent of new single cell dispensing and imaging technologies has significantly shortened the cell line development workflow for novel clinical assets while simultaneously facilitating the demonstration of monoclonality. Incorporating

SEED • **Biosciences**

this information into regulatory filings to support the claim of monoclonality is of great importance in biologics development. Here, we applied a state-ofthe art dispensing and imaging workflow for the generation of mammalian cell lines, with exquisite probability of monoclonality.

Speaker: Dr Olga Rimkevich, Associate Director, Process Development, Mural Oncology

Tuesday 25 June 2024

10:20 - 10:50

Room: Lammermuir 1

High-Recovery Lentiviral Vector Purification Using an LV Tailored Anion-Exchange Membrane Design Sponsored by Sartorius

The rapid expansion of Cell and Gene Therapy clinical trials has led to a corresponding increase in demand for viral-based gene delivery vectors. Lentiviral Vectors (LVs) have become highly sought after for ex vivo modification of patient cells, particularly in

Chimeric Antigen Receptor T-cell (CAR-T) therapies. However, the industry faces challenges in manufacturing these advanced therapeutics, resulting in limited global supply of drug products, restricted patient access, and low early-line usage. One major bottleneck in LV production lies in their purification. Efficient

and reliable LV purification poses a significant challenge due to their structural complexity, typically resulting in low product recoveries of 15-25%. Anion-Exchange (AEX) chromatography, using convective membrane adsorbents, is commonly utilized for the primary capture of LVs from cell culture supernatant. However, this unit operation alone accounts for most of the DSP process losses and typically results in functional product recoveries of only 10-30%. As LVs are increasingly adapted to treat a growing number of disease indications, AEX chromatography presents a widely applicable and adaptable purification method. Therefore, enhancing recoveries is crucial for expanding access to LV drug products.

Speaker: George Pamenter, PhD Researcher, Oxford Biomedica (UK) Ltd., Department of Biochemical Engineering, University College London, London, UK

Tuesday 25 June 2024

10:20 - 10:50

Room: Lammermuir 2

ELEVECTA cell lines for next-generation AAV manufacturing - Combining high scalability and increased quality by reducing encapsidated host cell DNA Sponsored by Cytiva

Gene therapy has revolutionized human medicine for inherited diseases. Recombinant adenoassociated virus (AAV) has been used extensively to deliver transgenes in clinical studies. A major

challenge is establishing production processes that can keep up with the increasing demand for quantity and quality of viral vectors.

Speaker: Michelle Hussong, Head of Molecular Biology and Analytics, Cytiva
INDUSTRY EDUCATIONAL SESSIONS

Tuesday 25 June 2024

12:40 - 13:40

Room: Lammermuir 2

Developing Optimal Cell Culture Media and Processes for Enhanced Biologics Production

Sponsored by FUJIFILM Irvine Scientific

Cell culture medium remains the most fundamental component for utilizing cells as factories and therapies. Therefore, media development and optimization are a key area of focus for the biopharmaceutical industry to deliver therapies faster to market with reduced manufacturing

Irvine Scientific

cost. Streamlining the development of biotherapeutic processes includes using the right media and understanding the relationship between media components, the cell culture process, and the final product.

In this presentation, we will highlight three areas of innovation that provide end-to-end cell culture media solutions for: CHO perfusion processes for mAbs production, high-throughput media formulation screening workflow tailored for human embryonic kidney 293 (HEK293), and the use of DMSO-free cryopreservation medium for successful preservation of a range of primary cells and cell lines.

You will discover:

- How to improve productivities with a rationale designed perfusion medium in a continuous steady-state tabletop bioreactor without maintaining peak cell densities.
- How to design and implement a customizable, streamlined process for the development of cell culture media to facilitate the production of desired biological products in diverse cell lines.
- How to achieve media design and optimization using high-throughput screening methods while reducing time and cost.

PN 019812 Rev.01

Speakers: Luis Rodriguez, PhD, R&D Manager, Shan Gao, PhD, R&D Senior Scientist II, Chandana Sharma, PhD, R&D Sr. Director

INDUSTRY EDUCATIONAL SESSIONS

Tuesday 25 June 2024

12:40 - 13:40

Room: Lammermuir 2

Industry perspectives on cell line development Sponsored by Lonza

Taking a therapeutic protein through from discovery to commercial launch is a challenging process with multiple potential pitfalls and challenges. Along the development timeline, different protein expression processes will be

used, such as transient and stable gene expression, that all need to achieve titre, quality and speed metrics so that therapeutic and commercial targets are met on time. As such, the choice of expression platform as well as the optimisation of such multi-component tools, is critical. In this workshop/discussion panel, we'll be taking a deeper look at a therapeutic protein's journey from discovery to commercial supply, and look specifically at each stage of the process from DNA design to clone selection. We'll discuss how high titres can be achieved across the development timeline, and also consider what further optimisations could be made. Join us for an exciting debate involving leading experts from across industry and academia.

Tuesday 25 June 2024

13:50 - 14:30

Room: Lammermuir 1

Should Dissolved CO2 Be a Critical Process Parameter? Unpacking the Impact: An Analysis of Recent Research in Cell Culture Applications Sponsored by Hamilton Bonaduz Ag

This 45 minute session will explore the significance of real-time monitoring of dissolved CO2 as a Critical Process Parameter (CPP) within biopharmaceutical manufacturing with cell culture, specifically focusing

on benefits for scaling up/down and extended perfusion operations. It will highlight recent research, showing that accurate control of dissolved CO2 levels is crucial for optimizing cell culture conditions, ensuring efficient process scalability, and maintaining long-term productivity.

INDUSTRY EDUCATIONAL SESSIONS

Speakers: Prof Dr Thomas Villiger, Lecturer In Bioprocess Technology and Team Leader Bioprocess Technology – School of Life Sciences FHNW – Institute for Pharma Technology Muittenz (Switzerland).

Mr Giovanni Campolongo, Senior Segment Manager Process Analytics Biopharma – Hamilton Bonaduz AG

Tuesday 25 June 2024

13:50 - 14:30

Room: Lammermuir 2

Streamlining mAb Discovery & Development Processes with Automated High- Throughput Antibody Analytics Sponsored by Beckman Coulter Life Sciences

In the rapidly advancing field of antibody discovery and development, the integration of high-throughput and automation solutions has revolutionized workflow efficiency, significantly increasing both speed and sample output. To harness these advancements fully, it is crucial to

implement automation-friendly bio-analytics that prevent process bottlenecks.

Explore the innovative ValitaTiter and the newly launched Valita Aggregation assays. These simple, high-throughput, plate-based assays are designed for antibody quantification and quality assessment, seamlessly integrating into automated workflows. Discover how these assays, automated on the Biomek workstations, can streamline your processes, enhance throughput, and maintain the high standards required in antibody analytics.

Speakers:

Emma Sharkey, Application Specialist, Beckman Coulter Life Sciences Eligio Iannetti, Senior Business Development Manager, Beckman Coulter Life Sciences

Need a kick starter for networking?

Lunch & Connect

Share your personal and professional interests at first glance

Building a robust **network** is of paramount importance in today's professional landscape. The **ESACT conference** serves as an excellent platform to connect with a diverse group of professionals. However, particularly for those who are **new to the community** it can be **challenging forging long-term acquaintances**.

ESACT Frontiers have ingeniously addressed this networking challenge. We prepared stickers that attendees can affix to their conference badges. **Each sticker corresponds to a category**, representing either a **personal** or **professional interest**. This simple yet effective method allows attendees to **visually share their interests**, acting as the perfect icebreaker for initiating conversations and fosters a **more engaging and inclusive conference environment**.

POSTER PRESENTATIONS

Theme 01. Cells as Factories

Poster Session 1, June 24, 2024, 2:15 PM - 3:45 PM Poster Session 2, June 24, 2024, 7:30 PM - 9:00 PM Poster Session 3, June 25, 2024, 2:30 PM - 4:00 PM

PS1-1 Design and validation of a semi-automated workflow for therapeutic cells expansion, harvest, and final fill. Dr Julien Muzard¹, Mr. Donnie Beers, Mr Ross Acucena ¹Entegris, Moirans, France, ²Entegris, Billerica, USA

- PS2-2 Overcoming expression challenges of x-specific antibodies by balancing chain expression Dr Anett Ritter¹ ¹Novartis Pharma AG, Basel, Switzerland
- PS3-3 Lentiviral vector production in HEK293-T suspension cells with single-use bioreactors Dr Johanna Viiliäinen¹, M.Sc Josefin Thelander¹, M.Sc Christine Sund-Lundström¹, Dr Greta Hulting¹, M.Sc Ann-Christin Magnusson¹ ¹Cytiva, Uppsala, Sweden
- PS1-4 Expression of complex therapeutic proteins at very high yields with stable CHO GPEx Lightning pools Dr Philipp Claar¹ ¹CSL Behring Innovation Gmbh, Marburg, Germany
- PS2-8 Automated plasmid purification can reduce labour time and increase AAV9 titres in small-scale productions Mrs Sanne Rönning¹, Mr Hannes Thorell¹, Dr Magdalena Malm¹, Prof Johan Rockberg¹ ¹KTH Royal Institute of Technology, Stockholm, Sweden
- PS3-9 Interaction studies of artificial globular C1q variants with pentameric and hexameric IgM <u>Ms Maria Magdalena John</u>¹, Ms. Monika Hunjadi¹, Ms. Vanessa Hawlin¹, Prof. Renate Kunert¹ ¹BOKU University of Natural Resources and Life Sciences, Vienna, Austria

PS1-10 Sar1A overexpression improves antibody productivity of CHO cells through secretion process engineering

<u>Mr Yu Tsunoda¹,²</u>, Assoc. Noriko Yamano-Adachi¹,²,³, Prof. Takeshi Omasa¹,²,³

¹Graduate School of Engineering, Osaka University, Osaka, Japan, ²Manufacturing Technology Association of Biologics, Hyogo, Japan, ³Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan

PS2-11 Production of recombinant proteins and virus-like-particles for antibody development using baculovirus-free insect cell expression system

<u>Ms Seyhan Demiral</u>¹, Mr. Marcel Jaron¹, Mr. Jonathan Benecke¹, Ms Nina Lehmler¹, Dr. Maren Schubert¹, Prof. Dr. Michael Hust¹, Prof. Dr. Stefan Dübel¹

¹TU Braunschweig - Department of Biotechnology, Braunschweig, Germany

PS1-13 Strategic design of antibiotic selection marker drives high titer in the GOCHO[™] platform

<u>Ms Sheffali Dash¹</u>, Seungjo Park¹, Michelle Sabourin¹, Peggy Lio¹ ¹Cytiva, Marlborough, United States

PS2-14 Efficient Targeted Integration in CHO Using BXB Integrase <u>Mr Tobias May¹</u>, Dr. Kristina Nehlsen¹, Dr. Anne Dittrich¹ ¹InSCREENEX, Braunschweig, Germany

PS3-15 Influenza A Defective Interfering Particles as Broad-Spectrum Antivirals

Lars Pelz¹, Tanya Dogra¹, Daniel Ruediger¹, Julia Boehme², Olivia Kershaw³, Dunja Bruder², Dr Sascha Young Kupke¹, Udo Reichl¹,⁴

¹Max Planck Institute DCTS, Bioprocess Engineering, Magdeburg, Germany, ²Helmholtz Centre for Infection Research, Immune Regulation, Braunschweig, Germany, ³Freie Universitaet Berlin, Department of Veterinary Pathology, Berlin, Germany, ⁴Otto von Guericke University, Bioprocess Engineering, Magdeburg, Germany

PS1-16 Battle of the Barriers: Preventing Transgene Silencing with Barrier Elements.

<u>Miss Rebecca Sizer¹</u>, Dr. Claire Arnall², Dr. Emma Biggs², Dr. Leon Pybus², Prof. Nia Bryant¹, Prof. Robert White¹ ¹University Of York, York, United Kingdom, ²Fujifilm Diosynth Biotechnologies, Billingham, United Kingdom, ³IBioIC, Glasgow, United Kingdom

PS2-17 Epigenetic engineering via targeted DNA demethylation can improve biologic production in CHO cells

<u>Miss Sienna Butterfield</u>¹, Miss Rebecca Sizer¹, Miss Sarah Smart², Dr. Fay Saunders², Prof. Nia Bryant¹, Prof. Robert White¹ ¹University Of York, York, United Kingdom, ²FUJIFILM Diosynth Biotechnologies, Billingham, United Kingdom, ³iBiolC, Glasgow, United Kingdom

PS3-18 Scalable High-Density Microcarrier Suspension Culture of Human Adipose and Wharton's Jelly Mesenchymal Stem Cells

Dr Anamaría Daza¹,², Ms Pilar Vera¹,², Mr Jaime Plane¹,³, Dr. Sebastián Alvarado⁴, Dr. David Vantmann⁵, Dr. Barbara Andrews¹,², Dr. Pablo Caviedes¹,³, Dr. Juan A. Asenjo¹,² ¹Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, , Chile, ²Institute for Cell Dynamics and Biotechnology (ICDB), , Chile, ³Program of Molecular& Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, , Chile, ⁴Hospital Clinico San Borja Arriarán, , Chile, ⁵Centro de Estudios Reproductivos - CER, , Chile

PS1-19 Establishment of a scalable stable lentivirus manufacturing process in suspension perfusion mode.

<u>Dr. Holger Laux¹</u>, Mr. Maximilian Klimpel¹, Ms. Marta Arrizabalaga², Ms. Vathsalya Pabbathi², Ms. Nikki Lal¹, Prof. Qasim Rafiq², Ms. Vicky Pirzas¹ ¹CSL Behring, Marburg, Germany, ²UCL, London, UK

PS2-20 Modifying Chimeric Antigen Receptor (CAR) expression in T cells using m6A-associated elements-containing UTR sequences

<u>Dr Nga Lao¹</u>, Dr., Simeng Li¹, Prof. Niall Barron¹,² ¹NIBRT, Dublin⁴, Ireland, ²School of Chemical and Bioprocess Engineering, UCD,, Dublin⁴, Ireland

PS3-21 Exploring bioprocess operation modes for the expansion of human Mesenchymal Stromal Cells

<u>Ms Johanna Pechan^{1,2}</u>, Kristina Engström^{2,3}, Lina Sörvik^{2,3}, Prof. Véronique Chotteau^{1,2}</u>

¹Cell Technology group, Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH - Royal Institute of Technology, Stockholm, Sweden, ²AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, , , ³Cellcolabs AB, Solna, Sweden

PS1-22 Design of Experiment (DoE) Enabled Scale-Up for Adenoassociated Virus (AAV) Production

<u>Ms Alexandra Bogdanovic</u>¹,²,⁵, Dr Jessica Whelan²,³, Dr Susan McDonnell², Dr Nicholas Donohue¹,⁴, Prof Brian Glennon¹,² ¹Applied Process Company Limited (APC Ltd), Dublin, Ireland, ²School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland, ³Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland, ⁴National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland, ⁵Funded by the Irish Research Council EBPPG/²0²²/³⁸

PS1-25 Novel hyperglycosylated recombinant bovine folliclestimulating hormone (rbFSH): a potential candidate for veterinary use

<u>Mr Javier Villarraza^{1,2}</u>, Mr Sebastián Antuña³, Mr María Belén Tardivo³, Dr María Celeste Rodríguez^{1,2,4}, Dr Diego Fontana^{1,2,3}, Mr Lucas Etchevers^{2,5}, Dr María Emilia Odriozola^{2,5}, Dr Pablo Díaz^{2,5}, Dr Hugo Ortega^{2,5}, Dr Natalia Ceaglio^{1,2}, Dr Claudio Prieto^{1,3}

¹UNL, FBCB, Centro Biotecnológico del Litoral (CBL), Santa Fe,, Argentina, ²CONICET, , Argentina, ³Biotecnofe S.A., Santa Fe,, Argentina, ⁴UNL, FBCB, Cátedra de Química Analítica II, Santa Fe,, Argentina, ⁵UNL, ICiVet-Litoral, Centro de Medicina Comparada (CMC), Esperanza,, Argentina

PS3-27 Producing Oncolytic Newcastle Disease Virus in EB66 cells <u>Mr Lennart Jacobtorweihe</u>¹, Mr. Brice Madeline², Mr. Dr. Arnaud Léon², Ms. Prof. Yvonne Genzel¹, Mr. Prof. Udo Reichl¹,³ ¹Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany, ²Valneva SE, Saint-Herblain, France, ³Otto-Von-Guericke-University, Magdeburg, Germany

PS1-28 Exploiting time-delayed IL-21 supplementation in repeatedbatch cultivation for controlled B cell expansion and differentiation

<u>Ms Elisabeth Ranze¹</u>, Mr. Moritz Helm¹, Dr. Katrin Gollner², Dr. Ullrich Gollner², Dr. Valérie Jérôme¹, Prof. Ruth Freitag¹ ¹University Of Bayreuth, Bayreuth, Germany, ²Praxis am Schießgraben, Kulmbach, Germany

PS1-31 Production of Adeno-associated virus containing proapoptotic TRAIL is enhanced by shRNA interference. Dr Simeng Li¹, Dr Nicholas Donohue¹, Dr Stefano Boi¹, Prof. Niall Barron¹ ¹National Institute for Bioprocessing Research and Training, Blackrock, Ireland

	PS3-33	Context-dependent genomic locus effects on antibody production in recombinant CHO cells generated through random integration
		Dr Jae Seong Lee, Ms. Hyun Jee Woo, Mr. Jaehoon Kim, Ms. Seul Mi Kim, Mr. Dongwoo Kim, Dr. Jae Yun Moon, Dr. Daechan Park
		¹ Ajou University, Suwon, South Korea
	PS1-34	Sericin Reduces Glucose Consumption and Increases Cellular Population and Amount of Biologics Mr. Naoki Shimizu ¹ , Mr. Yuya Murakami ¹ , Mr. Ryo Masugi ¹ , Dr. Satoshi Terada ¹ , Dr. Jun Takahashi ² ¹ University of Fukui, Fukui, Japan, ² SEIREN Co. Ltd., Fukui, Japan
	PS2-35	Improvement of the Biological Production Supplementing with SERICIN into Hyperosmotic Culture Dr Satoshi Terada ¹ , Mr. Masaya Fujita ¹ , Mr. Masaya Takeo ¹ , Mr. Masashi Nakao ¹ , Dr. Jun Takahashi ² ¹ University of Fukui, Fukui, Japan, ² SEIREN Co. Ltd., Fukui, Japan
	PS3-36	Finding the Needle in the HEKstack - Media Screening for AAV Production in HEK293 Dr Kathrin Teschner ¹ , Dr Alyssa Vetter ¹ , Dr Pia Brinkert ¹ , Dr Vera Ortseifen ¹ ¹ Sartorius Xell GmbH, Bielefeld, Germany
	PS1-37	A CHO cell-based simultaneous display and secretion platform for accelerated bispecific antibody development Dr Yuansheng Yang ¹ ¹ Bioprocessing Technology Institute, Singapore, Singapore
	PS2-38	IDENTIFICATION OF TRANSGENE INTEGRATION SITES, THEIR STRUCTURE AND EPIGENETIC STATUS WITH CAS⁹-TARGETED NANOPORE SEQUENCING <u>Dr Nicolas Marx¹, Mr. Klaus Leitner², Dr. Krishna</u> Motheramgari ² , Prof. Nicole Borth ¹ , ² ¹ University Of Natural Resources And Life Sciences Vienna (BOKU),
		Vienna, Austria, -Austrian Centre of maustrial Biotechnology, Vienna, Austria
	PS3-39	Biomass specific perfusion rate as a control lever for the continuous manufacturing of biosimilar antibodies <u>Dr Eunice Leong¹</u> , Ms Wen Qin Tang ¹ , Mr Jake Chng ² , Ms Lyn Chiin Sim ¹ , Ms Zi Ying Zheng ¹ , Dr Wei Zhang ¹ , Dr Ian Walsh ¹ , Dr Gerben Zijlstra ³ , Mr Maarten Pennings ² , Dr Say Kong Ng ¹ ¹ Bioprocessing Technology Institute, Singapore, Singapore, ² BiosanaPharma, , Netherlands, ³ Sartorius Stedim Netherlands <i>B.V.</i> , , Netherlands

ESA

SA

SA

PS1-40 A two-dimensional model to predict influenza virus and defective interfering particle coinfection in tissue-like systems

Dr Daniel Rüdiger¹, Ms. Patricia Opitz², Dr. Sascha Young Kupke¹, Prof. Udo Reichl¹,² ¹Max Planck Institute For Dynamics Of Complex Technical Systems Magdeburg, Magdeburg, Germany, ²Otto-von-Guericke University Magdeburg, Magdeburg, Germany

PS2-41 Adeno-associated virus production intensification by continuous bioprocess with repeated transfections in high cell-density perfusion bioreactors

<u>Dr Ye Zhang</u>^{1,2,3}, Prof. Véronique Chotteau^{1,2,3} ¹GeneNova, Innovation Milieu for AAV gene therapy, Stockholm, Sweden, ²AdBIOPRO, VINNOVA Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden, ³CETEG, Dept. of Industrial Biotechnology, CBH School, KTH, Stockholm, Sweden

PS3-42 A high-throughput screen identified microRNAs to increase AAV production in HEK293 suspension cells

<u>Ms Madina Burkhart</u>¹, Ms. Bettina Finkbeiner², Mr. Jona Röscheise¹, Dr. Andreas Schulze², Ms. Sabrina Reichl², Dr. Florian Sonntag², Dr. Markus Hörer², Prof. Dr. Kerstin Otte¹ ¹Institute for Applied Biotechnology, Biberach University of Applied Sciences, Biberach, Germany, ²Ascend GmbH, Planegg, Germany

PS1-43 Establishment of a suspension-based perfusion process for the effective production of lentiviruses

<u>Miss Marta Arrizabalaga Cascallana¹</u>², Mr. Maximilian Klimpel², Dr. Stephen Goldrick¹, Dr. Holger Laux², Prof. Qasim Rafiq¹ ¹Department of Biochemical Engineering, University College London (UCL), London, United Kingdom, ²CSL Behring Innovation GmbH, Marburg, Germany

PS2-44 Evaluation of biofabrication of ³D cellularized constructs for monoclonal antibody production

<u>Mr Elliott Cowles</u>¹, Dr Laura Chastagnier¹, Dr Julia Niemann², Dr Magali Barbaroux³, Dr David Pollard⁴, Dr Oscar Reif², Dr Christophe Marquette¹, Dr Emma Petiot¹

 ¹³d.fab, University Claude Bernard of Lyon (UCBL), Villeurbanne, France, ²Sartorius Stedim Biotech Gmbh, Goettingen, Germany,
³Sartorius Stedim, Aubagne, France, ⁴Sartorius Stedim, Bohemia, United States

PS3-45 Optimizing defective interfering particles of influenza virus for antiviral treatment

<u>Ms Tanya Dogra¹</u>, Lars Pelz¹, Daniel Ruediger¹, Julia Boehme², Maike Baelkner²,³, Olivia Kershaw⁴, Yvonne Genzel¹, Dunja Bruder²,³, Sascha Young Kupke¹, Udo Reichl^{1,5} ¹Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany, ²Helmholtz Center for Infection Research, Braunschweig, Germany, ³Otto von Guericke University, Institute of Medical Microbiology, Magdeburg, Germany, ⁴Freie University Berlin, Berlin, Germany, ⁵Otto von Guericke University, Bioprocess Engineering, Magdeburg, Germany

PS1-46 Increased energy production in producing cells to satisfy demands for growth, productivity and maintenance energy <u>Ms Jerneja Štor¹z²</u>, Dr. nat. techn. David Ruckerbauer^{1,3}, PhD Diana Széliová³, Dr. Sarah Sacco⁴, Prof. Jamey Young⁴, Ao. Univ. Prof. Dr. Nicole Borth^{1,2}, Univ.-Prof. DI Dr. Jürgen Zanghellini³ ¹Austrian Centre of Industrial Biotechnology,, Vienna, Austria, ²University of Natural Resources and Life Sciences, Vienna, Austria, ³University of Vienna, Vienna, Austria, ⁴Vanderbity University, Nashville, USA

- PS2-47 Understanding the Mechanism of Intracellular Multispecific Antibody Aggregation in CHO Cells Dr Lauren Kraft¹, Dr. Hillary Warrington¹, Thomas Kelly¹ ¹Johnson & Johnson Innovative Medicine, Spring House, United States
- PS3-48 Expanding the Apollo[™]X Cell Line Development toolbox: Strategies for challenging modalities Dr Devika Kalsi¹, Mr Samuel Walker¹, Dr Leon Pybus¹, Dr Fay Saunders¹ ¹FU/IFILM Diosynth Biotechnologies, Billingham, United Kingdom

PS1-49 Effect of AAV gene expression in the transcriptome of CHO cells

<u>Ms Konstantina Tzimou¹</u>, Prof Lars K. Nielsen¹, Dr Jesús Lavado-García¹

¹Technical University Of Denmark, Kongens Lyngby, Copenhagen, Denmark

PS2-50 N-1 perfusion process for intensification of AAV production Dr Johanna Viiliäinen¹, Dr. Srdja Drakulic¹, M.Sc Christine Sund-Lundström¹, M.Sc Ann-Christin Magnusson¹, M.Sc Thomas Falkman¹ ¹Cytiva, Uppsala, Sweden

PS3-51 On-demand hydrogel microcarrier production by ink-jet bioprinting for stem cell scalable suspension culture Dr Carlos Chocarro Wrona¹, Dr Mark SZCZYPKA², Dr. Julia

<u>Dr Carlos Chocarro Wrona</u>¹, Dr Mark SZCZYPKA², Dr. Julia NIEMANN³, Dr. Martha MAYO⁴, Dr. David POLLARD⁴, Dr Magali BARBAROUX⁵, Dr Emma PETIOT¹ ¹³d.fab, University Claude Bernard of Lyon (UCBL), Lyon, France,

²Sartorius, Ann Arbor, US, ³Sartorius, Göttingen, Germany,
⁴Sartorius, Boston, US, ⁵Sartorius, Aubagne, France

PS1-52 Engineering and Production of a Novel Cytokine Trap for the Treatment of Canine Atopic Dermatitis

<u>Mr Pablo Esteban Mussio</u>^{1,2}, Dr. María Celeste Rodríguez^{1,2}, Dr. Claudio Prieto^{1,2}

¹UNL, FBCB, Centro Biotecnológico del Litoral (CBL)., Santa Fe , Argentina, ²CONICET, , Argentina

PS2-53 Unlocking DOE potential selecting the most appropriate design for rAAV optimization.

<u>Dr Jesús Lavado-García</u>¹, Mr. David Catalán-Tatjer¹, Ms. Konstantina Tzimou¹, Prof. Lars K. Nielsen¹ ¹Technical University of Denmark (DTU), Copenhagen, Denmark

PS3-54 Impact of MOI and Baculovirus Ratio on rAAV Production with the Baculovirus Expression Vector System

<u>Mr Mels Schrama¹</u>, Pranav Puri², Femke Hoeksema², prof.dr. Monique van Oers¹, prof.dr.ir. Gorben Pijlman¹, prof.dr.ir. Rene Wijffels¹, dr.ir. Dirk Martens¹ ¹Wageningen University & Research, Wageningen, Netherlands,

¹Wageningen University & Research, Wageningen, Netherlan ²VectorY Therapeutics, Amsterdam, Netherlands

PS1-55 Enhancement of rAAV2 Viral Vector Yield Recovery in Upstream Lysate Material Dr.Lorpa Kollyl, Mr.Shandol Pariagi, Mrs.Taolor Pattersoni, Mi

<u>Dr Lorna Kelly</u>¹, Mr Shandel Pariag¹, Mrs Taelor Patterson¹, Miss Kirsty McManus¹ ¹Pharmaron, Liverpool, United Kingdom

r nurnuron, Eiverpool, o

PS2-56 Mechanisms of antiviral action of the influenza defective interfering particle "OP⁷"

<u>Dr Julita Piasecka¹</u>, Dr. Daniel Rüdiger¹, Jan Küchler¹, Dr. Sascha Kupke¹, Prof. Udo Reichl¹,²

¹Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany, ²Otto-von-Guericke-University Magdeburg, Magdeburg, Germany

PS3-57 CHO based production of vaccines, therapeutic enzymes and antibodies with bespoke glycosylation. <u>Mr Bjoern Voldborg</u>^{1,2}

¹Technical University Of Denmark, Kgs. Lyngby, Denmark, ²Bioneer A/S, Hoersholm, Denmark

PS1-58 Lowering culture temperature changes ubiquitinated proteins in the Endoplasmic Reticulum of Chinese Hamster Ovary cells

> <u>Mr David Ryan¹</u>², Dr Michael Henry², Ms Christiana Kondylo-Sideri¹,², Dr Selvaprakash Karuppuchamy², Dr Esen Efeoglu², Dr Paula Meleady¹,²

¹School of Biotechnology, Dublin City University, Dublin, Ireland, ²Life Sciences Institute, Dublin City University, Dublin, Ireland

PS2-59 Engineering a lactate sensing and controlling system in CHO cells

<u>Mr Alex Arrese-Igor¹,²</u>, Dr Elise Cachat^{1,2} ¹Institute for Quantitative Biology, Biotechnology and Biochemistry, Edinburgh, United Kingdom, ²Centre for Engineering Biology, Edinburgh, United Kingdom

- PS1-60 Custom cell culture media increased production by 70% in a platform CHO fed-batch process Dr Kimberly Curtis¹, Dr. Nan Lin¹, Dr. Zhou Jiang¹ ¹Cytiva, Marlborough, United States
- PS1-61 Breaking Boundaries: From Hybridoma Adaptation to the Development of Analytical Techniques

<u>Miss María Jesús Leopold</u>^{1,2}, Dr. Ricardo Kratje^{1,2}, Dr. Marcos Oggero^{1,2}, Dr. Natalia Ceaglio^{1,2} ¹UNL, FBCB, Centro Biotecnológico del Litoral (CBL), Santa Fe, Argentina, ²CONICET, , Argentina

PS2-62 In pursuit of a minimal genome: Establishment of a largescale genome deletion strategy

<u>Mrs Melina Braeuer</u>¹, Linus Weiss¹, Tobias Jerabek¹, Hannah Fahrion¹, Dr. Nadja Raab², Dr. Nikolas Zeh³, Dr. Simon Fischer³, Prof. Dr. Kerstin Otte¹

¹Institute for Applied Biotechnology, Biberach University of Applied Sciences, Biberach an der Riss, Germany, ²Novartis Pharma GmbH, Kundl, Austria, ³Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach an der Riss, Germany

PS3-63 Transient cell line for high-titer rAAV production with lowlevel hcDNA encapsidation

<u>Dr Ben Hudjetz</u>¹, Sabine Schmidt-Hertel¹, Tamara Grabeck¹, Keerthana Srinivasan¹, Dr. Michael Mühle¹, Christian Niehus¹, Dr. Michelle Hussong¹, Kelly Cybulski², Tala Calvi², Anne MacIntyre², Akshay Gutha Ravichandran², Adam Hejmowski², Dr. Michelle Olson Peabody², Dr. Nikola Strempel¹, Dr. Markus Krieger¹

¹Cytiva, Cologne, Germany, ²Cytiva, Westborough, USA

PS2-65 Bridging the gap: perfusion scalability for process intensification using WAVE[™] 25 bioreactor

<u>Mr Jeron Larsen¹</u>, Ms Josefine Anfelt², Ms Susanna Tronnersjo² ¹Cytiva, Logan, United States, ²Cytiva, Uppsala, Sweden

PS3-66

Evaluation of Small Molecule Antagonists of Cellular Innate Immunity for Efficient Manufacturing of T-cell Therapeutics <u>Dr. Jean-Simon Diallo</u>, Dr. Jondavid de Jong, Ms. Keara Sutherland, Ms Andrea Vervoort ¹Virica Biotech, Ottawa, Canada

PS1-67 Designing a 1.5 L bench-scale model of a perfusion process <u>Ms Josefine Anfelt¹</u>, Mr Sahebagouda Alagur², Mr Christopher Prem Kumar Isaacraj², Mr Mike Dango³, Mr Thomas Falkman¹ ¹Cytiva, Uppsala, Sweden, ²Cytiva, Bangalore, India, ³Cytiva, Marlborough, USA

PS2-68 High-throughput screening for high-performance cell culture media development

<u>Dr. Shan Gao¹</u>, Mr. Matthew Tenorio¹, Mr. Hamid Soleymani¹, Dr. Xiaofei Wang¹, Dr. Yosuke Kurokawa¹, Dr. Ken Naruse¹, Dr. Omid Taghavian¹, Dr. David T. Ho¹, Dr. Chandana Sharma¹ ¹*FUJIFILM Irvine Scientific, SANTA ANA, United States*

PS3-69 Large-Scale Production of Human iPSCs with Automated Stirred Tank Bioreactors for Bioprinting Applications

<u>Mrs Mira Genser Nir</u>, Mrs Rukmini Ladi¹, Debbie L. L. Ho², Stacey Lee², Jianyi Du², Jonathan Weiss², Tony Tam², Soham Sinha², Danielle Klinger², Sean Devine¹, Art Hamfeldt¹, Hope Leng², Jessica Herrmann², Mengdi He², Lee Fradkin², Tze Kai Tan², David Standish¹, Peter Tomasello¹, Donald Traul¹, Noushin Dianat³, Quentin Vicard³, Kishore Katikireddy¹, Mark Skylar-Scott²

¹Sartorius Stedim North America Inc, , United States, ²Stanford University, Stanford, CA, USA, , United States, ³Sartorius Stedim France S.A.S, , France

PS1-70 Optimizing Antibody Expression through Refined Vector Element Screening in Isogenic CHO Cell Lines

<u>Mrs Marzia Rahimi¹</u>, Dr. Jesús Lavado García¹, Mrs Anna Christina Adams¹, Dr Lise Marie Grav¹, Prof Lars Keld Nielsen¹ ¹Technical university of Denmark, Lyngby, Denmark

PS2-71 Engineering mammalian cell growth dynamics for biomanufacturing

<u>Dr Mauro Torres</u>¹, Prof. Alan Dickson¹ ¹*The University Of Manchester, Manchester, United Kingdom*

PS3-72 Internalization of DNA:PEI polyplexes in transient transfection of HEK293 cells is mediated by Glypican-4 coalescence

<u>Mr. Pol Pérez Rubio¹</u>, Dr. Meritxell Vendrell Flotats¹, Ms. Elianet Lorenzo Romero¹, Dr. Laura Cervera Gràcia¹, Dr. Francesc Gòdia Casablancas¹, Dr. Jesús Lavado García² ¹Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain, ²Novo Nordisk Foundation Center for Biosustainability, Lyngby, Denmark

PS1-73 Development of a CDM for duck cell process intensification for the cultured meat industry

<u>Mr Andy Díaz-Maneh^{1,2}</u>, Mr. Andreu Camacho-Sucarrats^{1,2}, Dr. Javier Fuenmayor-Garcés¹, Dr. Natasa Ilic¹, Dr. Yuliana Enciso¹, Ms. Natalia García-Aranda¹, Dr. Mario Notari¹, Dr. Jesús Lavado-García³, Dr. Francesc Gòdia², Dr. Raquel Revilla¹ ¹CUBIQ FOODS SL, Granollers, España, ²Universitat Autònoma de Barcelona, Cerdanyola del Valles, España, ³Technical University of Denmark, Kongens Lyngby, Denmark

PS2-74 Baculovirus as a versatile tool for recombinant protein expression and mammalian cell line engineering

Dr Manuel Reithofer¹, Ms. Maria Toth¹, Ms, Sophie Lissl¹, Prof. Dr. Reingard Grabherr¹ ¹Institute Of Molecular Biotechnology, University Of Natural Resources And Life Sciences Vienna, Vienna, Austria

PS3-75 Inducible expression systems for recombinant protein production in mammalian cells

<u>Ms Maria Toth</u>¹, Dipl.-Ing. PhD. Manuel Reithofer¹, Priv.-Doz. Dipl.-Ing. Dr. Astrid Dürauer¹, Univ.Prof. Dipl.-Ing. Dr.rer.nat. Reingard Grabherr¹

¹University For Natural Resources And Life Sciences Vienna (BOKU), Vienna, Austria

PS1-76 Evaluation of Targets for CHO Cell Line Engineering and Generation of Enhanced Host Cell Lines

<u>Mrs Ann-Cathrin Leroux</u>¹, Ms Daniela Kirchmeier¹,², Ms Jennifer Klein¹, Mr. Jannis Marzluf¹, Mr Daniel Ziegner¹, Mr. Christoph Zehe¹

¹Sartorius Stedim Cellca GmbH, Ulm, Germany, ²ViraTherapeutics GmbH, Rum, Austria

PS2-77 T22 peptide-conjugated GagGFP-VLPs: A novel approach for targeted therapy in metastatic colorectal cancer

<u>Ms Elianet Lorenzo Romero¹</u>, Mr Marc García¹, Dr Eric Voltá², Dr Ugutz Unzueta², Prof Francesc Godia¹, Prof Laura Cervera¹ ¹Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, BELLATERRA, Barcelona, Spain, ²CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain

PS3-78 Inefficient transcription is a production bottleneck for artificial therapeutic BiTE® proteins

<u>Mr Tobias Jerabek¹</u>, Ms Madina Burkhart¹, Ms Selina Goetz², Mr Benedikt Greck², Mrs. Anika Menthe², Dr. Ruediger Neef², Prof. Dr. Kerstin Otte¹

¹Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany, ²Amgen Research (Munich) GmbH, Munich, Germany

PS1-79 Unleashing the Power of Perfusion: A Breakthrough in Cell Line Development for Intensified Processes

<u>Mr. Vincent Balassi</u>¹, Ms. Mary Otto¹, Mr. Corey Kretzmer¹, Dr. Amber Petersen¹, Dr. Trissa Borgschulte¹, Dr David Razafsky¹ ¹Merck KGaA, Darmstadt, Germany, St. Louis, United States

PS2-80 CHO-Cell Expansion Optimization for Monoclonal Antibody Production

<u>Mr Luís Bernardo Silva</u>¹, PhD Bassem Ben Yahia¹, PhD Wolfgang Paul¹

¹UCB Pharma SA, Braine-L'Alleud, Belgium

PS3-81 HEK Cell line development to optimize rAAV production

<u>Dr Stefano Boi¹</u>, Ms. Yi-Hsuan Huang¹, Dr. Sven Mathias¹, Dr. Monika Zauner¹, Ms. Martina Raasholm¹, Dr. Dominik Haidas¹, Ms. Angelika Hinkelmann¹, Mr. Najd Badri¹, Dr. Sadfer Ali¹, Dr. Kathrin Teschner², Dr. Ulrike Jung¹, Dr. Kristin Thiele¹ ¹Sartorius Stedim Cellca GmbH, Ulm, Germany, ²Sartorius Xell GmbH, Bielefeld, Germany

PS1-82 Development of fed-batch-based processes for intensified rVSV-vectored SARS-CoV-2 vaccine production in suspension HEK293 cells

Miss Cristina Aglaia Silva^{1,2}, Prof. Amine A Kamen², Prof. Olivier Henry¹

¹Department of Chemical Engineering, Polytechnique Montréal, Montreal, Canada, ²Department of Bioengineering, McGill University, Montreal, Canada

PS2-83 DirectedLuck®: A careful transposon design boosts expression beyond the limit

<u>Dr Thomas Rose¹</u>, Dr. Sven Krügener¹, Dr. Susanne Seitz¹, Dr. Annett Hillemann¹, Dr. Karsten Winkler¹, Ms. Anneliese Krüger¹, Ms. Anika Bauer¹, Ms. Nurgül Korkmaz¹, Ms. Fränzi Creuzburg¹, Ms. Anne Furthmann¹, Ms. Sophia Sörensen¹, Dr. Volker Sandig¹ ¹ProBioGen AG, Berlin, Germany

PS3-84 Developing inducible stable producer cell line for rAAV production via site-specific integration

<u>Dr Seongkyu Yoon¹</u>, Mr Qiang Fu¹, Ms Emily Doleh², Prof. Mark Blenner²

¹University Of Massachusetts Lowell, Lowell, United States, ²University of Delaware, Wilmington, USA

PS2-86 Heterogeneity in Adeno-Associated Virus Transfection-Based Production Process Limits the Production Efficiency

<u>Mr Brian Ladd¹</u>,², Ms Sofia Tunmats¹,², Prof Torbjorn Graslund²,³, Prof Véronique Chotteau¹,²

¹Cell Technology group, Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH - Royal Institute of Technology, Stockholm, Sweden, ²AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden, ³Div, Protein Engineering, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH - Royal Institute of Technology, Stockholm, Sweden

PS1-88 Comparison of CHO-K1 cell lines following serum-free and suspension adaptation.

<u>Mr Matthew Reaney</u>¹, Dr. Jon Dempsey², Prof. Alan Dickson¹ ¹University Of Manchester, Manchester, United Kingdom, ²Pathway Biopharma Ltd., Edinburgh, United Kingdom

PS2-89 Unraveling Productivity-Enhancing Genes in CHO Cells via CRISPR Activation Screen Using Recombinase-Mediated Cassette Exchange System

<u>Ms Minhye Baek</u>¹, Dr. Che Lin Kim², Dr. Su Hyun Kim¹, Dr. Karen Julie la Cour Karottki², Dr. Hooman Hefzi², Dr. Lise Marie Grav², Dr. Lasse Ebdrup Pedersen², Prof. Nathan E. Lewis³, Prof. Jae Seong Lee⁴, Prof. Gyun Min Lee¹

¹Department of Biological Sciences, KAIST, Daejeon, Republic of Korea, ²The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark, ³Departments of Pediatrics and Bioengineering, University of California, San Diego, USA, ⁴Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea

PS3-90 Optimization of the Autographa californica multiple nucleopolyhedrovirus genome by CRISPR-Cas⁹ for biologics production

<u>Miss Madhuja Chakraborty</u>¹, Ms. Lisa Nielsen¹, Miss Jacqueline Powichrowski¹, Dr. Marc Aucoin¹ ¹University Of Waterloo, Waterloo, Canada

PS2-92 DNA-based genomic barcoding for clonal diversity monitoring and control in cell-based complex antibody production

<u>Mr Niels Bauer¹</u>, Mr. Christoph Oberist¹, Dr. Michaela Poth¹, Prof. Julian Stingele², Dr. Oliver Popp¹, Dr. Simon Auslaender¹ ¹Roche Diagnostics GmbH, Penzberg, Germany, ²Ludwig-Maximilians-University, Munich, Germany

PS3-93 Optimising a novel cell desiccation and storage protocol: an in vitro and in vivo study <u>Ms Lady Barrios Silva</u>¹ ¹UCL Eastman Dental Institute, London, United Kingdom

PS1-94 Self-controlled synthetic cells for detection and counteraction of bacterial infections

<u>Mr Sushobhan Sarker</u>¹, Mr Omkar Desai¹, Dr Natascha Gödecke¹, Dr Hansjörg Hauser¹, Dr Mario Köster¹, Prof Dr Dagmar Wirth¹

¹*Helmholtz Centre for Infection Research, Braunschweig, Germany*

PS2-95 Optimization of scalable rAAV-production for gene therapy – leveraging at-line amino acid measurements

<u>Dr Milla Neffling</u>¹, Prasanna Srinivasan², John Joseph², Tam N T Nguyen³, Graziella Piras¹, Prof. Anthony J Sinskey⁴, Prof. Richard D Braatz⁵, Jacqueline Wolfrum², Paul W Barone², Stacy L Springs²

¹⁹0⁸ Devices, Boston, United States, ²Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, USA, ³BioNTech SE, Cambridge, USA, ⁴Massachusetts Institute of Technology, Department of Biology, Cambridge, USA, ⁵Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, USA

PS3-96 Spent media analysis aids in determining metabolic mechanisms of superior CAR T-cell products

<u>Dr Milla Neffling</u>¹, Heather Lin², Dejah Blake², William Liu³, Subir Goyal⁴,⁵, Ruby Freeman², Anupam Patgiri³,⁵, Lily Yang⁵,⁶, Edmund Waller²,⁵, Sarwish Rafiq²,⁵

¹⁹0⁸ Devices, Boston, United States, ²Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, USA, ³Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, USA, ⁴Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, USA, ⁵Winship Cancer Institute, Atlanta, USA, ⁶Department of Surgery, Emory University School of Medicine, Atlanta, USA

PS1-97 Systematic Bioprocess Characterisation of NISTCHO, a Freely Available Producer Cell Line

<u>Ms Larissa Hofer¹</u>, Ms Jerneja Štor¹, Mr Dominik Hofreither², Ms Laura Liesinger², Dr. Veronika Schäpertöns³, Mr Thomas Berger³, Dr. Wolfgang Esser-Skala³, Prof. Dr. Nicole Borth¹, Prof. Dr. Ruth Birner-Grünberger², Dr. Nikolaus Fortelny³, Prof. Dr. Christian Huber³

¹University of Natural Resources and Life Sciences, Vienna, Austria, ²Technical University, Vienna, Austria, ³Paris Lodron University, Salzburg, Austria

PS2-98 Increasing LVV quality via stable overexpression of VSV-G in suspension producer cell lines

<u>Maximilian Klimpel</u>², Dr. Susi Wudtke¹, Nikki Indresh Lal², Vathsalya Pabbathi², Melina Braeuer², Herbert Dersch², Dr Holger Laux², Vicky Pirzas²

¹CSL Innovation, Melbourne, Australia, ²CSL Behring Innovation, Marburg, Germany

PS3-99 Advancing Ferritin's Potential for Antigen Presentation in Vaccine Development

<u>Ms. Margarida Queluz Rodrigues</u>^{1,2}, Ms. Sara Patão^{1,2}, Dr. Brian Kloss³, Mrs. Mónica Thomaz^{1,2}, Mr. Tiago Nunes^{1,2}, Dr. Paula Marques Alves^{1,2}, Dr. António Roldão^{1,2}

¹*iBET*, Instituto de Biologia Experimental e Tecnológica, ²⁷⁸¹-⁹0¹ Oeiras, Portugal, ²ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, ²⁷⁸¹-⁹0¹ Oeiras, Portugal, ³Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, USA

PS1-100 Establishment of novel CHO-MK cells and optimal culture strategy for enhancement of therapeutic protein production

Dr. Junshin Iwabuchi^{1,2}, Ms Erike Widyasari Sukowati¹, Ms. Ryoko Aoki¹, Mr. Takashi Kaieda¹,², Ms. Kayo Nishida¹,², Ms. Michi Kubota¹,², Dr. Takayuki Horiuchi¹,² ¹Chitose Laboratory Corp., Kawasaki, Japan, ²Manufacturing Technology Association Biologics, Tokyo, Japan

PS3-102 Reality-cHEK – How Innate Immunity Impacts Lentivirus Production in HEK293 and How to Address It

Mrs Luisa Marie Scheller^{1,2}, Dr. Kathrin Teschner¹, Dr. Vera Ortseifen¹

¹Sartorius Xell GmbH, Bielefeld, Germany, ²Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany

Unravelling the link between genotype and fast-growth via **PS2-104** optimized CHO whole genome knockout screening Mr Jannis Marzluf^{1,2}, Dr. Ann-Cathrin Leroux¹ ¹Corporate Research, Sartorius, Ulm, Germany, ²Department of Gene Therapy, University of Ulm, Ulm, Germany

Exploring different transcriptional responses in isogenic PS3-105 multi-copy CHO cells upon recombinant protein production Ms Giulia Scapin¹, Mr Leo Dworkin³, Ms Daria Seergeeva², Ms

Lise Marie Grav¹, Mr Gyun Min Lee⁴, Mr Lars Keld Nielsen^{2,5} ¹Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark, ²The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark, ³Pediatrics and Bioengineering, University of California San Diego, La Jolla,, USA, ⁴Department of Biological Sciences, KAIST, Daejeon, Republic of Korea, ⁵Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia

PS1-106 Amino acid response elements for inducible control of gene expression in Chinese hamster ovary cells

Ms Maja Papež¹, Dr. Nicolas Marx², Prof. Dr. Nicole Borth² ¹Austrian Centre of Industrial Biotechnology (acib) GmbH, Vienna, Austria, ²University of Natural Resources and Life Sciences (BOKU), Vienna, Austria

PS2-107 Scalability of spheroid-derived extracellular vesicles production in stirred system

Mr. Thibaud Dauphin¹, Ms. Laurence De Beaurepaire¹, Dr. Apolline Salama¹, Ms. Karine Haurogne¹, Ms. Sophie Sourice¹, Mr. Quentin Pruvost¹, Dr. Eric Olmos², Dr. Steffi Bosch¹, Dr. Blandine Lieubeau¹, Dr. Mathilde Mosser¹ ¹Oniris, INRAE, IECM, F-⁴⁴³00 Nantes, France, ²Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France

Precise methylation of FUT8 promoter regions allows PS1-109 isolation of CHO cells with a fine-tuned glycoprofile

Mr Victor limenez Lancho^{1,2}, Dr. Nicolas Marx¹, Prof. Nicole Borth¹.²

¹University of Natural Resources and Life Sciences of Vienna, Vienna, Austria, ²Austrian centre for industrial biotechnology, Graz, Austria

PS2-110 Investigating Titre and Genome Packaging during **Recombinant AAV (rAAV) Gene Therapy Viral Vector** Production

Miss Kseniia Pidlisna¹, Dr Pamela Gamba², Dr Vera Lukashchuk², Dr Michela Pulix², Dr Sue Podmore², Prof Mark Smales^{1,3}

¹University of Kent, Canterbury, United Kingdom, ²Charles River Laboratories, Keele, United Kingdom, ³National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland

PS1-112 Genetically encoded sensor circuits for the development of therapies: a theragnostic approach

Ms Eunice Goncalves^{1,2}, Ms Ana Isabel Almeida^{1,2}, Dr Miguel Guerreiro^{1,2}, Dr Sofia Fernandes^{1,2}, Dr Ana Sofia Coroadinha^{1,2} ¹*iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras,* Portugal, ²² Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal

PS2-113 Unveiling the mechanisms behind high rAAV titers in HeLaS3 platform using Genome Wide Genetic Screens

Miss Filipa Moura^{1,2}, Miss Mariana Antunes^{1,2}, Dr Patrícia Gomes-Alves^{1,2}, Dr Paula M. Alves^{1,2}, Dr José Escandell^{1,2} ¹*iBET, Instituto De Biologia Experimental E Tecnológica, Oeiras,* Portugal, ²ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal, Oeiras, Portugal

Advancing T cell manufacturing through tight control of **PS3-114** cell activation in stirred-tank bioreactors.

Miss Constança Costa^{1,2}, Margarida S. Costa^{1,2}, Marta H. G. Costa^{1,2}, Nádia Duarte^{1,2}, Paula M. Alves^{1,2}, Margarida Serra^{1,2} ¹Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal, ²Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal

Impact of oxygenation on hWJ-Mesenchymal Stromal Cells PS1-115 (MSCs) growth and EVs production in mixed bioreactors Mr Kevin Audoux¹, Dr Jessica Schiavi¹, Prof Eric Olmos¹ ¹University Of Lorraine, CNRS, LRGP, Nancy, France

PS2-116 Dual Technology Intensification- Fixed Bed Bioreactor Technology Combined with Viral Sensitizers for Adherent Cell Lines

<u>Dr. Jean-Simon Diallo¹</u>, Emmanuelle Cameau², Megan Cloughley², Elena Godbout³, Anne Landry³, Andrew Chen³, Ms. Keara Sutherland¹, Tianxiao Yang¹, Dr. Jondavid de Jong¹, Ms Andrea Vervoort¹

¹Virica Biotech, Ottawa, Canada, ²Cytiva, Marlborough, USA, ³Ottawa Hospital Research Institute, Ottawa, Canada

PS3-117 Label-Free Quantitative Proteomic Analysis of CHO-DP12 and CHO-K1 Cells under ER Stress Conditions

<u>Miss Christiana-Kondylo Sideri</u>^{1,2}, Dr Michael Henry², Dr Esen Efeoglu², Prof Paula Meleady^{1,2} ¹Life Sciences Institute, DCU, Dublin, Ireland, ²School of Biotechnology, DCU, Dublin, Ireland

PS1-118 Improvement of IgG Production in Chemically defined Systems via Protein Hydrolysate Supplementation Mr Brandon Wrage¹, Angel Varela-Rohena¹, Salewa Akande¹, Brittany Patterson¹ ¹Kerry, Beloit, United States

PS2-119 Enhanced production of AAV2 and AAV9 in HEK293 cells through DoE-optimization of triple plasmid ratio.

<u>Mr Sungje Park¹</u>, Dr. Seunghyeon Shin¹, Prof. Haeshin Lee², Prof. Jae-Hyung Jang³, Prof. Gyun Min Lee¹ ¹Department of Biological Sciences, KAIST, Daejeon, South Korea, ²Department of Chemistry, KAIST, Daejeon, South Korea, ³Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea

PS3-120 Optimizing T-cell expansion with a high-performance medium free of animal derived components. Dr. Joanna Kern¹, Mr Kyle Zastrow¹, Ms Lauren Kapus¹, Mr Evan Zynda¹, Mrs Anna Hachmann¹ ¹Thermo Fisher Scientific, Grand Island, United States

PS1-121 Novel human cell lines, HAT, for high-yield AAV production Dr. Yugo Hirai¹,², Dr Yu-Hsin Chang¹,², Ms. Kazuko Aizawa²,³, Ms. Arisa Yamamoto¹,², Mr. Ryo Asahina¹,², Ms. Rena Moromizato¹,², Ms. Michi Kubota¹,², Prof. Kazuaki Nakamura²,³, Dr. Takayuki Horiuchi¹,²

¹Chitose Laboratory Corp., Kawasaki, Japan, ²Manufacturing Technology Association of Biologics, Tokyo, Japan, ³Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan PS3-123 A scalable insect cell (Sf9)-dual baculovirus system for nonviral gene therapy (NVGT) production

<u>Dr Adhvait Shah</u>¹, Dr Swetha Kumar¹, Mr Hyun-Woo Kim¹, Dr Darrick Yu¹, Dr Jeong Lee¹ ¹*GMU CMC, Sanofi, Waltham, United States*

PS1-124 Thermo-Responsive Microcarrier as A New Tool for Expansion Cell Culture

<u>Dr Young-jin Kim¹</u>, Mr. Shoya Hiratoko¹, Mr. Sora Ikeya¹, Dr. Toshinobu Toyoshima¹, Dr. Toshifumi Mogami¹ ¹Tosoh Corporation, Ayase, Japan

PS2-125 Accelerating CRISPR Therapies: A Scalable eVLP Manufacturing Platform for Breakneck Advances in Gene Therapies

<u>Dr. Lúcia Santos</u>^{1,2}, MSc Rodrigo Nogueira^{1,2}, Dr. Ana Sofia Coroadinha^{1,2}

¹*iBET* - Instituto de Biologia Experimental e Tecnológica, Apartado ¹², ²⁷⁸¹-⁹0¹, Portugal, ²Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, ²⁷⁸0-¹⁵⁷ Oeiras, Portugal

PS3-126 Enhancing Outgrowth of Glutamine Synthetase Double KO in CHO-K1 using Directed Evolution

<u>Mr Rehmadanta Sitepu</u>, Dr. Martina Baumann, Dr. Nicolas Marx, Prof. Nicole Borth ¹Institute of Animal Cell Technology and Systems Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria

PS1-127 Influence of different culture media exchange ratios on umbilical cord blood-derived Natural Killer cell expansion <u>Mr Gabriel Costa^{1,2}</u>, Isabel Doutor^{1,2}, Prof Ana Fernandes-Platzgummer^{1,2}

¹Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ²Associate Laboratory i⁴HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

PS2-128 Epigenetically Heritable Gene Expression Patterns Are Associated With Stress Resistance in CHO Cell Lines Assoc. Prof. Mark Blenner¹, Mr. Spencer Grissom¹, Zach Dixson¹, Prof Abhyudai Singh¹ ¹University of Delaware, Newark, United States

PS3-129 Defining and Manipulating Cellular Mechanisms Underpinning DNA Transfection Efficiency to Enhance Transient Recombinant Protein Production

<u>Dr James Budge</u>¹, Prof. Mark Smales¹,² ¹University Of Kent, Canterbury, United Kingdom, ²NIBRT, Dublin, Ireland

PS1-130 Supplying NAD+ Precursor improves specific productivity of mAb and modulates glucose metabolism in CHO cells <u>Hye-Jin Han</u>¹, Ms. Hagyeong Kim¹, Mr. Hyun Gyu Yu¹, Mr. Jong Uk Park¹, Ms. Joo Hee Bae¹, Mr. Ji Hwan Lee¹, Prof. Jong Youn Baik¹ ¹Inha University, Incheon, South Korea

PS2-131 Strategies to optimize the generation of high-titer CHO production cell lines <u>Dr Alexandra Baer¹</u>, Dr Peter Ravn¹ ¹Bioneer A/S, Hørsholm, Denmark

PS3-132 Investigation of the metabolism and fed-batch culture development of Jurkat cells

<u>Miss Markella Zacharouli¹</u>², Prof Veronique Chotteau¹,² ¹*Cell Technology group, Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH - Royal Institute of Technology, Stockholm, Sweden, Stockholm, Sweden,* ²*AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing*

PS1-133 Engineering of CHO Cell Lipid Metabolism Results in Expanded ER and Enhanced Recombinant Biotherapeutic Production

<u>Dr James Budge</u>¹, Dr Tanya Knight¹, Dr Jane Povey¹, Miss Joanne Roobol¹, Mr Ian Brown¹, Dr Gurdeep Singh², Dr Andrew Dean², Ms Sarah Turner², Dr Colin Jaques², Dr Robert Young², Dr Andrew Racher², Prof. Mark Smales¹,³

¹University of Kent, Canterbury, United Kingdom, ²Lonza Biologics, Slough, United Kingdom, ³NIBRT, Dublin, Ireland

PS2-134 Towards an Understanding of Donor-to-Donor Heterogeneity in In Vitro Natural Killer Cell Production Mr Brian Ladd^{1,2}, Ms Markella Zacharouli^{1,2}, Dr. Per-Henrik

Holmqvist³, Dr. Stefanie Renken³, Dr. Pontus Blomberg^{4,5}, Prof Véronique Chotteau^{1,2}

¹Cell Technology group, Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH - Royal Institute of Technology, Stockholm, Sweden, Stockholm, Sweden, ²AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden, ³XNK Theraputics, Huddinge, Sweden, ⁴Vecura, Department of Laboratory Medicine, Karolinska Institutet, , Sweden, ⁵Vecura, Karolinska Cell Therapy Center, Karolinska University Hospital, Sweden

PS3-135 Building up a tailored, CHO host library via cell line engineering

<u>Dr Sam Zhang</u>¹, Dr. Yu Zhang¹, Dr. Tao Sun¹, Dr. Shuai Wang¹, Ms. Qiao Gao¹, Dr. Zichen Qian¹, Dr. Weichang Zhou¹ ¹Wuxi Biologics, Shanghai, China

PS2-137 Evaluation of an Engineered CHO Cell Line as novel host for Enhanced Biopharmaceutical Production Mrs. Kristin Thiele¹, Dr. Ann-Cathrin Leroux, Dr. Jimit Shah, Ms. Imme van der Kamp, Mr Lukas Klein, Ms. Martina Raasholm,

Imme van der Kamp, Mr Lukas Klein, Ms. Martina Raasholm, Ms. Carmen Leichtle, Dr. Christoph Zehe ¹Sartorius, Ulm, Deutschland

PS3-138 Novel Directed-Evolution Approach to Engineering Cells for Significantly Improved Therapeutic Protein and Viral Vector Production

<u>Mr Larry Forman¹</u>, Dr Kathy Ngo¹, Dr Lawrence Chasin² ¹Cho Plus, South San Francisco, United States, ²Columbia University, NewYork, United States

PS1-139 Achieving High Monoclonal Antibody Production in Fed-Batch Cultures by Engineering Requisite Phenotypes into CHO Cells

<u>Mr Larry Forman¹</u>, Dr Kathy Ngo¹, Dr Lawrence Chasin² ¹Cho Plus, South San Francisco, United States, ²Columbia University, New York, United States

PS2-140 A cell line biosensor for viral detection and quantification <u>Miss Eunice Gonçalves¹,</u>², Ana Isabel Almeida¹,², Miguel Guerreiro¹,², Sofia Fernandes¹,², Ana Sofia Coroadinha¹,² ¹*iBET* - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal, ²ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal

PS3-141 Exploring the potential of secreted products from canine mesenchymal stromal/stem cells against antibioticresistant bacteria

<u>Mrs Amira Aburza¹</u>, Prof Xavier Donadeu¹, Dr Gavin Paterson¹, Dr Cristina Esteves¹ ¹University Of Edinburgh, Roslin Institute, Edinburgh, United Kingdom

PS1-142 Implementation of a scalable downstream processing of immunoregulatory small extracellular vesicles Mr Quentin Pruvost¹, Mr Thibaud Dauphin¹, Ms Clémentine Claire¹, Ms Valérie Lalanne¹, Mr Grégoire Mignot¹, Ms Blandine Lieubeau¹, Mr Jean-Marie Bach¹, Ms Apolline Salama¹, Ms

Laurence De Beaurepaire¹, Ms Mathilde Mosser¹ ¹Oniris, INRAE, Immuno-Endocrinologie Cellulaire et Moléculaire (IECM), Nantes, France

PS2-143 Novel isolation and activation platform with active-release technology for scalable cell therapy manufacturing

<u>Mr. George Prout</u>, Maren Grün¹, PhD Hany Meås², Sylvie Kjær², PhD Artur Javmen³, Joanna Kern⁴, Hendrik Adams⁵, Laurens Sierkstra⁵, Eugene Kang⁶, PhD Tuva Hereng², Heidi Vebø² ¹Thermo Fisher Scientific, Reinach, Switzerland, ²Thermo Fisher Scientific, Oslo, Norway, ³Thermo Fisher Scientific, Vilnius, Lithuania, ⁴Thermo Fisher Scientific, Grand Island, United States of America, ⁵Thermo Fisher Scientific, Leiden, Netherlands, ⁶Thermo Fisher Scientific, Chelmsford, United States of America

PS2-146 2G-UNic genetic enhancers applied in the CGT field for increasing viral titers and payload expression

<u>Dr Maurice van der Heijden¹</u>, Bart Engels¹, Annemarie de Jel¹, Chantal Tilburgs¹, Elena Gugiatti¹, Bircan Coban¹, Raymond Verhaert¹ ¹ProteoNic, Leiden, Netherlands

PS1-148 Improving Monoclonal Antibody Production in CHO Cells for Gastric Cancer: Assessing Promoters and Vector Designs

Dr Yesenia Latorre^{1,2}, Ms. Isis Araya^{2,6}, Dr Carla Gutiérrez², Dr. María Carmen Molina¹, Dr. Claudia Altamirano^{2,3,4,5} ¹Facultad de Medicina, Universidad De Chile, Santiago, Chile, ²Escuela de Ingeniería Bioquímica, PUCV, Valparaíso, Chile, ³Centro Regional de estudios de Alimentos y Salud, CREAS, Valparaíso, Chile, ⁴Center of Interventional Medicine for Precision and Advancer Cellular Therapy, IMPACT, Santiago, Chile, ⁵Centro de investigación interdisciplinar en Biomedicina, Biotecnología y Bienestar, C³B, Valparaíso, Chile, ⁶Universidad Adolfo Ibañez, Santiago, Chile

PS2-149 Enhancing Monoclonal Antibody Yield in CHO Cells for Gastric Cancer: Assessing Ratios of Global Regulators

<u>Dr Yesenia Latorre^{1,2}</u>, Ms Isis Araya^{2,3}, Dr Karen Toledo¹, Dr Carla Gutierrez², Mr Jose Rodriguez², Dr María Carmen Molina¹, Dr Claudia Altamirano^{2,4,5,6}

¹Facultad de Medicina, Universidad De Chile, Santiago, Chile, ²Escuela de Ingeniería Bioquímica, PUCV, Valparaíso, Chile, ³Universidad Adolfo Ibañez, Santiago, Chile, ⁴Centro Regional de Estudios de Alimentos y Salud, CREAS, Valparaíso, Chile, ⁵Center of Interventional Medicine for Precision and Advanced Cellular Therapy, IMPACT, Santiago, Chile, ⁶Centro de Investigación interdisciplinar en Biomedicina, Biotecnología y Bienestar, C³B, Valparaíso, Chile

PS3-150 Improvement of the production of an innovator human monoclonal antibody again MICA receptor

<u>Mr Jose Alejandro Rodriguez-Siza¹</u>, Dra Karen Toledo-Stuardo³, Dr Mauricio Vergara^{1,4}, Dra Maria Carmen Molina³, Dra Claudia Altamirano^{1,2,4,5}

¹Biochemical Engineering School, Faculty Of Engineering, Pontifical Catholic University Of Valparaiso, Valparaiso, Chile, ²Center for Interdisciplinary Research in Biomedicine, Biotechnology and Wellness (C³B), Valparaiso, Chile, ³Program of Inmonology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile., Santiago, Chile, ⁴Regional Center For Food and Health Studies (CREAS), Valparaiso, Chile, ⁵Center of Interventional Medicine For Precision on Advanced Cellular Therapy (IMPACT), Santiago, Chile

PS1-151 Rational design of inducible rep gene for rAAV packaging cell line generation in HEK293 cells

<u>Mrs Laia Bosch-Molist¹</u>, Dr. Xavier León², Dr. Miquel Garcia², Dr. Laura Cervera¹, Dr. Francesc Gòdia¹ ¹Universitat Autònoma Barcelona, Bellaterra (Cerdanyola del Vallès), Spain, ²Centre for Animal Biotechnology and gene Therapy (CBATEG), Bellaterra (Cerdanyola del Vallès), Spain

PS2-152 An improved CRISPR-Cas9 protein-based method to engineer Sf9 insect cell genes

<u>Mr Miguel Graça</u>^{1,2}, Dr. Nikolaus Virgolini^{1,2}, Dr. Ricardo Correia^{1,2}, Dr. Jose Escandell^{1,2}, Dr. António Roldão^{1,2} ¹*iBET*, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal, ²*ITQB-NOVA*, Instituto de Tecnologia Química e Biológica, Oeiras, Portugal

PS1-154 Use of Drosophila S2 Cells for Production of Highly **Immunogenic Antigens**

Dr. Magdalena Skrzypczak¹, Dr. Stine Clemmensen¹, Ms. Tanja Domeyer¹, Dr. Anders H. Hansen², Prof. Adam F. Sander³, Dr. Louise Goksøyr³, Dr. Cyrielle E. Fougeroux³, Assistant Prof. Manja Idorn Haugum⁴, Dr. Lasse Ebdrup Pedersen⁵, Dr. Willem A. de longh³

¹Expres²ion Biotechnologies, Hørsholm, Denmark, ²Christian Hansen A/S, Hørsholm, , Hørsholm, Denmark, ³AdaptVac, Copenhagen, Denmark, ⁴Department of Biomedicine, Aarhus University, Aarhus, Denmark, ⁵Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark

PS2-155

Large-scale Production of Extracellular Vesicles derived from hPSC for cardiac repair

Ms Ana Meliciano¹,², Dr Ana Filipa Louro¹,², Mr Pedro Vicente¹,², Ms Claudia Diniz^{1,2}, Mr João Jacinto^{1,2}, Dr Margarida Serra^{1,2} ¹*iBET- Instituto De Biologia Experimental E Tecnológica, Oeiras,* Portugal, ²ITOB-NOVA, Oeiras, Portugal

PS3-156 Synthetic biology and Inducible genetic circuits: A pathway to next generation Biotherapeutics

Dr Rajinder Kaur¹, Ms Sheryl Lim, Dr. Alfonso Blanco, Dr. loscani limenez Del Val ¹University College Dublin, Dublin, Ireland

- PS1-157 Data-driven reprogramming towards plasma cell phenotype to enhance recombinant protein production Dr. leva Berzanskyte
- PS2-158 Perfusing a mixture of four cell lines – insight into cell line divergence

Ms Anna Christina Adams¹, Dr. Lise Marie Grav¹, Prof Andreas Laustsen², Prof Lars Keld Nielsen¹ ¹Center for Biosustainability, DTU, ²⁸00 Lyngby, Denmark, ²Center for Antibody Technology, DTU, ²⁸00 Lyngby, Denmark

Theme 02. Product Quality

Poster Session 1, June 24, 2024, 2:15 PM - 3:45 PM Poster Session 2, June 24, 2024, 7:30 PM - 9:00 PM Poster Session 3, June 25, 2024, 2:30 PM - 4:00 PM

PS3-159 Characterization and Risk Assessment of Polysorbate-Degrading Hydrolases in Monoclonal Antibody Products Mr. Stefan Schneider¹, Mr. Linus Weiß¹,², Ms. Melanie Maier², Dr. Nikolas Zeh², Dr. Valerie Schmieder-Todtenhaupt², Mr.

Daniel Heinzelmann², Dr. Moritz Schmidt², Prof. Dr. Kerstin Otte¹, Dr. Daniel Lakatos², Dr. Simon Fischer² ¹University of Applied Science Biberach, Biberach a. d. Riß, Germany, ²Boehringer Ingelheim, Biberach a. d. Riß, Germany

PS1-160 Creating robust calibration models for Raman spectroscopy to monitor and control cell culture condition <u>Mr Wataru Kobayashi¹</u>, Mr Hiroaki Yamanaka¹, Ms Ayaka Suetsuna¹, Mr Natsuki Fukui¹, Mr Soichiro Shimoda¹ ¹Yokogawa Electric Corporation, ²-⁹-³² Nakacho, Musashino-shi,, Japan

PS2-161 Heparin-binding motif mutations of human diamine oxidase allow the development of a first-in-class histamine-degrading biopharmaceutical

<u>Dr Elisabeth Gludovacz</u>¹, Kornelia Schuetzenberger, Marlene Resch, Katharina Tillmann, Karin Petroczi, Markus Schosserer, Sigrid Vondra, Serhii Vakal, Gerald Klanert, Jürgen Pollheimer, Tiina A. Salminen, Bernd Jilma, Nicole Borth, Thomas Boehm ¹University Of Natural Resources And Life Sciences, Vienna, Austria

PS3-162 Rapid glycosylation profiling of capsid proteins of COVID-19 and AAV viruses

<u>Dr Yongjing Xie¹</u>, Dr Michael Butler¹ ¹National Institute for Bioprocessing Research & Training (NIBRT), Dublin ⁴, Ireland

PS1-163 High-Throughput Raman Spectroscopy Titer Prediction in Pharmaceutical Manufacturing: PAT as a Tool for Analytical Reduction

Dr João Medeiros Garcia Alcântara¹, Dr Mengyao Li¹, Mr. Jean-Michel Kessler¹, Dr. Annemarie Schoenfeld¹, Dr. Benjamin Sommer¹, Dr. Olivier Graf¹, Dr. David Garcia¹ ¹Novartis Pharma AG, Basel, Switzerland

	PS2-164	A Novel Strategy to Reduce Polysorbate Degradation? Influence of Cultivation Media on CHO Hydrolase
		Expression <u>Mr Linus Weiss</u> ^{1,2} , Ms. Elena Bollgönn ² , Dr. Nikolas Zeh ² , Ms. Melanie Maier ² , Mr. Andreas Unsöld ² , Prof.Dr. Kerstin Otte ¹ , Dr. Simon Fischer ² ¹ University of Applied Sciences Biberach, Biberach an der Riss, Germany, ² Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach an der Riss, Germany
	PS3-165	Interplay of Heavy Chain introns influences efficient transcript splicing and product quality of mAbs <u>Dr Suzanne Gibson¹</u> , Dr Emma Kelsall ¹ , Dr Claire Harris ¹ , Dr Diane Hatton ¹ , Dr Sarah Dunn ¹ , Dr Titash Sen ¹ ¹ Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, UK
ESACT	PS1-166	New Cell Culture Analyser Technology at Large Scale: Case study of implementation, issues and resolution <u>Dr Jesús E. Martínez-López¹</u> , Dr Josiah O'Sullivan ¹ , Dr Gearóid Duane ¹ , Dr Andrew Kelly ¹ , Ms Anne Marie Molloy ¹ ¹ Bristol Myers Squibb, Dublin, Ireland
ESACT	PS2-167	Fine-Tuning Post-Translational Modifications in Mammalian Cells: Exploring Media Optimization and Gene Editing Strategies Mr Lateef Aliyu ¹ , Dr Michael Betenbaugh ¹ ¹ Johns Hopkins University, Baltimore, United States
	PS3-168	Advancing Raman model calibration for perfusion bioprocesses <u>Mr Louis Hellequin¹</u> ¹ University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
	PS3-171	Investigating the effect of linker peptides on the fragmentation of Fc-fusion protein in mammalian cells <u>Mrs Eunji Lee^{1,2}</u> , Prof Yeon-Gu Kim ^{1,2} ¹ Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, ² Korea National University of Science and Techonology (UST), Daejeon, South Korea
	PS1-172	Considerations for Selecting Hydrolysates for use in Cell Culture Process Mr Jagadeesh Kanagala ¹ , Mr Madhava Ram Paranandi ¹ ¹ Kemwell Biopharma, Bangalore, India

PS2-173 Protein database modification to construct CHO SWATH-MS spectral library for quantitative profiling of high-risk HCPs

<u>Dr Tomoko Matsuda^{1,2,3}</u>, Prof. Norichika Ogata^{1,2,3}, Ms. Mari Yukimaru³, Ms. Ryoko Tani³, Dr. Hideo Takahata³, Prof. Takeshi Omasa^{1,2,3}

¹Nihon BioData Corporation, Kawasaki City, Japan, ²Graduate School of Engineering, Osaka University, Suita City, Japan, ³Manufacturing Technology Association of Biologics, Kobe City, Japan

PS3-174 A novel bioassay for predicting the immunogenicity of biologics in pre-clinical stages of development

<u>Miss María Jesús Leopold</u>^{1,2}, Dr. Agustina Gugliotta^{1,2}, Dr. Marina Etcheverrigaray^{1,2}, Dr. Eduardo Mufarrege^{1,2} ¹UNL, FBCB, Centro Biotecnológico del Litoral (CBL), Santa Fe, Argentina, ²CONICET, Argentina

PS2-176 Cell-free Raman spectroscopy in Ambr® bioreactor system utilizing automated flocculation

<u>Mr. Tobias Habicher</u>¹, Mr Nicolas Maguire¹, Dr. Thomas Wucherpfennig¹, Ms. Carina Guelch¹, Dr. Jochen Schaub¹ ¹Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach an der Riss, Germany

PS3-177 Without a Trace: Multiple Knockout of Host Cell Hydrolases to Tackle the Polysorbate Degradation Challenge

<u>Mr Linus Weiss</u>¹,², Dr. Nikolas Zeh², Ms. Melanie Maier², Dr. Simon Fischer², Prof. Kerstin Otte¹ ¹University of Applied Sciences Biberach, Biberach an der Riss, Germany, ²Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach an der Riss, Germany

PS1-178 Immunocompetent human 3D CNS cell models to advance ATMP development

<u>Miss Catarina M. Gomes^{1,2}</u>, Dr. Gabriela Silva^{1,2}, Dr. Stephan Holtkamp³, Dr. Maria João Sebastião¹, Dr. Daniel Simão¹, Dr. Mark Trautwein³, Dr. Patrícia Gomes-Alves¹, Dr. Catarina Brito^{1,2}

¹*iBET* - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal, ²Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal, ³Bayer Pharmaceuticals, Wuppertal, Deutschland

PS2-179 Amplification and fragmentation free Nanopore sequencing enables direct identification of adenoassociated virus (AAV) ssDNA

Ms Alice Karlsson¹, Mr Maximilian Karlander¹, Mr Martin Ryner², Dr Luigi Grassi³, Dr Claire Dobson³, Dr Janet Saunders³, Dr Fiona Cusdin³, Dr Lekan Daramola³, Dr Diane Hatton³, Dr Magdalena Malm¹, Prof Johan Rockberg¹

¹Department of Protein Science, KTH Royal Institute of Technology, Stockholm, SE-^{106 91}, Sweden, ²Department of Mathematics, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden, ³Biopharmaceutical Development, AstraZeneca, Milstein Building, Granta Park, Cambridge, CB²¹ ⁶GH, UK

A case study for ultrafiltration of high concentration mAb PS3-180 -Challenges and mitigation strategy

<u>Mrs Anindita Das¹</u>, Mr Kishor Galani², Mr Abhishek Bhatt³, Mr Rijikappoor Nagoorkani⁴, Mr Madhava Paranandi⁵ ¹Kemwell Biopharma, Bengaluru, India, ²Kemwell Biopharma, Bengaluru, India, ³Kemwell Biopharma, Bengaluru, India, ⁴Kemwell Biopharma, Bengaluru, India, ⁵Kemwell Biopharma, Bengaluru, India

PS1-181 Well Characterised Panel of Bovine Embryonic Stem Cells for Cultivated Meat Applications

<u>Ms Niamh Hyland¹</u>, Ms Elena Silverstein¹, Dr Max Pickup¹, Dr Joe Kelk¹, Dr Britt Tye¹, Dr Deepika Rajesh¹ ¹Roslin Technologies, Midlothian, United Kingdom

PS2-182 analogue on Core-Fucosvlation

Unlocking the Power of Antibodies: The Impact of a sugar

<u>Dr Martina Grabner¹</u>, Ms. Melanie Nguyen¹, Mrs. Katherine Hellman², Dr. Aline Zimmer¹ ¹Merck Life Science KGaA, Darmstadt, Germany, ²Millipore Sigma, Lenexa, USA

Dial-A-Sugar: Characterisation of Inducible Genetic Circuits PS3-183 to Control mAb Glycosylation

<u>Ms Sheryl Li Yan Lim¹</u>, Dr Apostolos Tsopanoglou¹, Dr Rajinder Kaur¹, Dr Alfonso Blanco², Dr Ioscani Jiménez del Val¹ ¹School of Chemical & Bioprocess Engineering, University College Dublin, Dublin, Ireland, ²Flow Cytometry Core Technologies, Conway Institute, University College Dublin, Dublin, Ireland

Well-Characterised Porcine iPSCs and c-Myc quantification **PS1-184** for cultivated meat applications.

Dr Max Pickup¹, Ms Niamh Hyland¹, Ms Sarah Ho¹, Dr Jorge Santoyo Garcia¹, Dr Madeleine Carter¹, Dr Pritika Singh¹, Dr Britt Tye¹, Dr Sheena Fraser¹, Dr Joe Mee¹, Dr Deepika Rajesh¹ ¹Roslin Technologies Limited, Edinburgh, United Kingdom

PS2-185 SialMAX: maximising biopharmaceutical α-2,6-sialylation in CHO Cells

<u>Miss Cristina Abascal Ruiz</u>¹, Dr Mina Ghahremanzamaneh¹, Dr Alfonso Blanco², Prof. Ioscani Jimenez del Val¹ ¹School of Chemical & Bioprocess Engineering, University College Dublin, Dublin, Ireland, ²Flow Cytometry Core Facilities, Conway Institute, University College Dublin, Dublin, Ireland

PS3-186 Development of innovative orthogonal analytical tools for in-depth size determination and separation of AAVs

<u>Ms Sabrina Leigheb¹</u>, Catarina Maia², Verena Buchacher¹, Maral Rahimzadeh¹, Patricia Pereia Aguilar³, Astrid Dürauer¹ ¹University of Natural Resources and Life Sciences (BOKU), Vienna, Austria, ²Instituto Superior Técnico, Lisbon, Portugal, ³Austrian Center of Industrial Biotechnology (ACIB), Vienna, Austria

- PS1-187 Tailoring Critical Protein Quality Attributes with Feeds <u>Mrs Kate Hellman¹</u>, Martina Grabner ¹Milliporesigma, Lenexa, United States
- PS2-188 AAV2 capsid fusion of large protein domains: multivariable insertion sites breakdown

<u>Miss Mariana Valentim Ferreira</u>^{1,2}, Miss Marina Curto^{1,2}, Dr Ana Sofia Coroadinha^{1,2} ¹*iBET-Instituto de Biologia Experimental e Tecnológica, Lisbon,*

Portugal, ²ITQB- Instituto de Tecnologia Química e Biológica António Xavier, Lisbon, Portugal

PS3-189 TheraPRO® CHO Media System: Streamlining Protein Production for Accelerated Antibody Therapeutics

<u>Dr. Jyoti Rawat¹</u>, Dr Josi Buerger¹, Ms Joanna Zormpa¹, Dr Ivan Carubelli¹, Mr Dipankar Borgayari¹, Mr Jacob McCowen-Smith¹, Ms Lucy Tate¹, Ms Aymaan Rahman¹, Mr Harinath Makanaboina¹, Dr Kenneth Low² ¹Lonza Bioscience, Slough, United Kingdom, ²Lonza Bioscience, Walkersville, USA

PS1-190 Know your AAV - Quality Control starts during Process Development

<u>Ms Maren Lehmkuhl¹</u>, Dr. Mareike Schulz¹, Julia Engel¹, Dr. Tim Steffens¹ ¹Sartorius Xell GmbH, Schloß Holte-Stukenbrock, Germany

PS2-191 Impact of carbon dioxide ingress in DS on Gene Therapy Drug Substance's pH and Quality Dr Marie Haufroid¹ ¹Ucb, Leuven, Belgium

PS1-193 Novel Continuous Production System for Standardized Extracellular Vesicles from immortalized human Mesenchymal Stromal Cells

<u>Dr Klaus Graumann¹</u>, Ms. Melanie Reininger, Dr. Roland Prielhofer¹, Ms. Claudia Lindner¹, Dr. Ingrid Hartl¹ ¹Phoenestra Gmbh, Linz, Österreich

PS3-195 Characterization of Antibody N-glycosylation from a Freely Available Producer CHO Cell Line: NISTCHO

<u>Mr Thomas Berger</u>¹, Dr. Veronika Schäpertöns¹, Ms. Larissa Hofer², Ms Jerneja Štor², Prof. Nicole Borth², Prof. Christian Huber¹

¹Paris Lodron University Salzburg, Salzburg, Austria, ²University of Natural Resources and Life Sciences Vienna, Vienna, Austria

PS1-196 Evaluating Intracellular Protein Expression Levels of Antibody Chains in CHO Cells to Identify Productivity Bottlenecks

<u>Ms Maja Semanjski</u>¹, Ms Urša Šipec¹, Ms Petra Sečnik¹, Ms Nina Pirher¹, Mr Lovro Kramer¹ ¹Novartis, Menges, Slovenia

PS2-197 Mesenchymal Stromal Cells retain their hematopoietic support capacity post cryopreservation without the need for revitalization

<u>Miss. Ana Lúcia Tiago¹,²,³</u>, Miss. Maria Catarina Carreira¹,²,³, Prof. Cláudia Lobato da Silva¹,²,³, Dr. Ana Fernandes-Platzgummer¹,²,³ ¹Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ²Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ³Associate Laboratory i⁴HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

PS3-198 Technical insight into product testing for AAV: Advancing quality assessments

<u>Mr Stuart Wright¹</u>, Dr Lisa Blackwood¹, Mr Lorenzo Tudini¹ ¹Sartorius Stedim Biooutsource, Glasgow, United Kingdom

PS1-199 Characterization of cell lines with enhanced antibody dependent cell cytotoxicity

<u>Dr Tiffany Mclamarrah</u>¹, Dr. Zach Goldblatt¹, Jennifer Tedstone¹, Victor Cairns¹, Dr. Jack Scarcelli¹ ¹Sanofi, Framingham, United States

PS2-200 Elucidating the impact of host cell protein populations on monoclonal antibody production

<u>Ms Jodie McAvinue</u>¹, Dr Stanislas Helle¹, Dr Cillian McCabe², Dr Kevin Turner², Dr Edel Durack³, Prof Sarah Hudson¹ ¹Department of Chemical Sciences, Bernal Institute, SSPC the SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick, Ireland, ²Eli Lilly, Kinsale, Ireland, ³Department of Biological Sciences, University of Limerick, Limerick, Ireland

PS3-201 Contactless Biomass Monitoring for Bioprocessing Using bio-reflectance Based Sensors Dr Lindsey Male¹

¹Aber Instruments, Aberystwyth, United Kingdom

PS1-202 Can IgG glycosylation be controlled through process parameters? A systematic analysis

<u>Mr Javier Bravo-Venegas</u>¹, Mr Jose Rodriguez-Siza¹, Prof Maria Molina Sampayo², Prof Marcela Hermoso²,³, Prof Julio Berrios¹, Prof Claudia Altamirano¹,⁴

¹School of Biochemical Engineering, Pontificia Universidad Católica De Valparaíso, Valparaíso, Chile, ²Centro de InmunoBiotecnología, Universidad de Chile, Santiago de Chile, Chile, ³University Medical Center, University of Groningen, Groningen, Netherlands, ⁴Centro Regional de Estudio en Alimentos Saludables, R¹⁷A¹⁰O0¹, Valparaíso, Chile

PS2-203 High throughput screening for product quality attributes early during mammalian cell line generation

<u>Dr Katharina Köther</u>¹, Dr. Michaela Strotbek¹, Dr. Anne Sydow¹, Dr. Simon Fischer¹, Mr Sebastian Püngel¹, Dr. Chi-Ting Ho¹, Mr Jürgen Fieder², Ms Annika Held¹, Dr. Benjamin Renner², Ms Corinna Ruedi¹, Ms Katja Lameli¹, Ms Rebecca Krieg², Ms Birgit Sonntag¹, Dr. Patrick Schulz², Dr. Joachim Bär¹, Dr. Dennis Blank¹

¹Launch & Innovation, Boehringer Ingelheim, Biberach, Deutschland, ²Development Biologicals, Boehringer Ingelheim, Biberach, Deutschland

PS3-207 Screening of excipients as potential stabilizers for oncolytic vesicular stomatitis virus (VSV) drug product

<u>Dr Mareike Elvert¹</u>, Julia Jo Casanovas¹, Dr Jorge Soza Ried², Dr Ingo Gorr², Dr Martin Dass²

¹Boehringer Ingelheim Therapeutics Gmbh, Ochsenhausen, Germany, ²Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany

Theme 03. Data, Cells and Processes

Poster Session 1, June 24, 2024, 2:15 PM - 3:45 PM Poster Session 2, June 24, 2024, 7:30 PM - 9:00 PM Poster Session 3, June 25, 2024, 2:30 PM - 4:00 PM

PS1-208 Fast Raman spectroscopy model generation for biopharmaceutical process monitoring and control. Mrs Selina Spiesschaert¹ ¹Novartis, Anbergerg, Austria

Soft-sensor for monitoring CHO cell pools producing SARS-**PS2-209** CoV-2 spike protein in a fed-batch process

Mr Juan Sebastian Reves Davila¹, Dr Lan Pham Phuong², Dr Olivier Henry¹, Mr Raul Molina³ ¹Polytechnique Montreal, Montreal, Canada, ²National Research Council Canada, Montreal, Canada, ³Proelium, Bogota, Colombia

Comprehensive modeling of cell culture profile using **PS3-210** Raman spectroscopy and machine learning

Dr Hiroki Tanemura¹, Dr Ryunosuke Kitamura¹, Ms Yasuko Yamada¹, Dr Masato Hoshino¹, Mr Hirofumi Kakihara¹, Dr Koichi Nonaka¹

¹Daiichi Sankyo Co., Ltd., , Japan

PS1-211 Towards the automated analysis of protein N-linked glycosylation pathways via an open-source computational framework

Mr Konstantinos Flevaris¹, Dr. Pavlos Kotidis¹, Prof. Kiyoko Aoki-Kinoshita², Prof. Cleo Kontoravdi¹

¹Imperial College London, London, United Kingdom, ²Glycan & Life Systems Integration Center (GaLSIC), Soka University, Tokyo, Japan

PS2-212 CHO Cell Culture with Digital Twins: A Practical Roadmap for Implementation

Mr Jannik Richter¹, Mr Oimin Wang², Mr Phil Thiel¹, Mr Ferdinand Lange¹, Prof. Dr. Xiaoying Zhuang², Dr. Dörte Solle¹, Prof. Dr. Sascha Beutel¹

¹Institute of Technical Chemistry, Leibniz University, Hanover, Germany, ²Institute of Photonics, Leibniz University, Hanover, Germanv

PS3-213 Leveraging prior knowledge to validate a bioreactor model across scales and cell lines

Dr Ioana Saldida¹, Dr Viktoria Gkoutzioupa², Prof Alexandros Kiparissides², Dr Edward Close¹, Dr Sarah Fadda¹ ¹Siemens Industry Software Limited, London, United Kingdom, ²Department of Biochemical Engineering, University College London, London, United Kingdom

PS1-214 Integrated culture system automatically collects data and controls cultivation in digital twin optimized condition. Dr Hiroaki Yamanaka¹, Mr. Natsuki Fukui¹, Mr. Souichirou Shimoda¹

¹Yokogawa Electric Corporation, Musashino-shi, Tokyo, Japan

PS2-215 Genome-scale modeling of CHO cells unravel the critical role of asparagine in feed media

<u>Dr Kuin Tian Pang^{1,2,3}</u>, Mr Yi Fan Hong¹, Dr Fumi Shouzi⁴, Shunpei Furomitsu⁴, Mr Matthew Myint¹, A/Prof Ying Swan Ho¹, Dr Yaron Sibelberg⁵, Dr Ian Walsh¹, Dr Meiyappan Lakshmanan¹,⁶

¹Bioprocessing Technology Institute, A*STAR, Singapore, Singapore, ²National University of Singapore, Singapore, Singapore, ³Nanyang Technological University, Singapore, Singapore, ⁴Ajinomoto Co., Inc, Kawasaki, Japan, ⁵Ajinomoto Genexine Co., Ltd, Chungcheongbukdo, Republic of Korea, ⁶Indian Institute of Technology Madras, Chennai, India

PS3-216 Demonstrating Key Processes of the T Cell Therapy Workflow in Chemically Defined Media.

<u>Anastassia Tselikova</u>, Shahram Shahabi, Chandana Sharma ¹*FUJIFILM Irvine Scientific, Santa Ana, United States*

PS1-217 EEM coupled with second-order data for monitoring SARS-CoV-2 Spike protein in mammalian cell cultures

<u>Mr Javier Villarraza¹</u>,², Ms Kimey Denise Mendoza¹, Dr Agustina Gugliotta¹,², Dr Ernesto Garay¹,², Dr Marina Etcheverrugaray¹,², Dr Claudio Prieto¹,³, Dr María Celeste Rodríguez¹,²,⁴ ¹UNL, FBCB, Centro Biotecnológico del Litoral (CBL), Santa Fe, Argentina, ²CONICET, , Argentina, ³Biotecnofe S.A., Santa Fe, Argentina, ⁴UNL, FBCB, Cátedra de Química Analítica II, Santa Fe, Argentina

PS3-219 Blending of chemically-defined liquid media for efficient screening of medium components in antibody production <u>Mr Hirotaka Kuroda^{1,2,3}</u>, Mr Kazuya Sorada¹, Dr. Noriko

<u>Mr Hirotaka Kuroda¹, ², ²</u>, Mr Kazuya Sorada¹, Dr. Noriko Yamano-Adachi¹, Dr. Junko Iida²,³, Prof. Takeshi Omasa¹ ¹Graduate School of Engineering, Osaka University, Osaka, Japan, ²Shimadzu Corp. , Kyoto, Japan, ³Shimadzu Analytical Innovation Research Lab., Osaka, Japan

PS1-220 Beyond the Bench: Revolutionizing Cell Line Development with Data Driven Digital Solutions <u>Ms Paloma Diaz-Fernandez¹</u>, Mr Vara Prasada Rao Sankarasetty¹ ¹Biopharm Process Research, Drug Substance Development, GSK, Stevenage, United Kingdom

PS2-221 Quantitative influenza A virus proteomics: impact of host cell line and virus seed

<u>Mr Jan Küchler¹</u> ¹Mpi Magdeburg, Magdeburg, Germany

PS1-223 Developing new host reporter cell line for rapid screening of targets for increasing mAb productivity

<u>Dr Katarzyna Sobkowiak¹</u>, Dr Julie Frentzel¹, Ms Marie-Noelle Vesin¹, Dr Julien Douet¹ ¹Merck KGaA, Fenil-sur-Corsier, Switzerland

PS2-224 Lifecycle DOE - Leveraging Cell Culture Development Data for Late Stage Success

<u>Dr Thomas Wucherpfennig</u>¹, Marco Kunzelmann, Philipp Brosig, Dr. Sabine Arnold ¹Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany

PS3-225 Harnessing HTP Automation Technologies and Modelling Approaches to Uplift mAbs/BsAbs Production through HID Process

<u>Dr Deniz Demirhan¹</u>, Dr Viswanathgouda Maraligannavar¹, Ms Anita Dabek¹, Ms Gheorghe Alexandra Gabriela¹, Dr Andrew Dean¹, Dr Sandeep Ranpura¹ ¹Lonza Biologics Plc, Slough, United Kingdom

PS1-226 Integrating industry leading datasets with genome scale metabolic models to direct CHO cell metabolic engineering. <u>Mr Benjamin Strain¹</u>, Dr Pavlos Kotidis², Dr Holly Corrigall², Prof. Cleo Kontoravdi¹

> ¹Department of Chemical Engineering, Imperial College London, London, United Kingdom, ²BioPharm Process Research, GSK, Stevenage, United Kingdom

PS2-227 Unveiling secrets: Pathway analysis provides molecular insights into stable lentiviral packaging and producer cell lines

<u>Mr Jona Röscheise</u>¹, Ms., Prof., Dr., Kerstin Otte¹, Mr, Dr. Holger Laux²

¹Iab Hochschule Biberach (AG Otte), Biberach an der Riß, Germany, ²CSL Behring, Marburg, Deutschland

PS3-228 Assessing genetic plasticity – Comparative analysis of HEK293 cells in response to evolutionary pressures Mr Georg Peter Smesnik¹, PhD Nikolaus Virgolini¹, Dr. Astrid Dürauer¹, Prof. Dr. Nicole Borth¹ ¹University of Natural Resources and Life Sciences, Vienna, Austria

PS1-229 Biacore[™] 8K+ surface plasmon resonance system as a tool in cell line development

Dr Johanna Rodhe¹, Bahareh Motaghi Moghaddam Shahri¹, Albin Larsson¹, Malin Kruukka¹, Dr Prajakta Khalkar¹, Dr Ann Lövgren¹, Daniel Ivansson¹ ¹Cytiva, Uppsala, Sweden

PS2-230 From Cells to Culture: Modelling the Dynamic Behaviour of CHO Cell Culture for Biotherapeutic Production

<u>Mr Alejandro Avilan Garzon^{1,2}</u>, Dr Bruno Ebel¹, Dr David Pfister², Prof Eric Olmos¹

¹Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, CNRS, Nancy, France, ²YPSO-FACTO, Nancy, France

PS3-231 Integrating metabolomics and proteomics for CHO cell bioprocess improvement

<u>Mr. Luke Johnston¹</u>, Miss Darina Stoyanova¹, Dr Mark Rendall², Dr Jeff Keen², Dr Karl Burgess¹ ¹University Of Edinburgh, Edinburgh, United Kingdom, ²FUJIFILM Diosynth Biotechnologies, Billingham, United Kingdom

PS1-232 Advancing Downstream Processing of AAVs: From Mechanistic to Hybrid Modelling in Anion Exchange Chromatography

<u>Ms Martina Winter</u>¹, Dr. Theresa Scharl², Dr. Astrid Dürauer¹ ¹Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciencess (BOKU), Vienna, ¹¹⁹0, ²Institute of Statistics, University of Natural Resources and Life Sciencess (BOKU), Vienna, ¹¹⁹0

PS2-233 Genome-Scale Modelling to Identify Lactate Reduction Strategies in CHO Cell Cultures

<u>Mr James Morrissey</u>¹, Dr. Ayca Cankorur-Cetinkaya², Dr. Jonathan Welsh², Dr. Annie J. Harwood-Stamper², Prof. Cleo Kontoravdi¹

¹Imperial College London, London, United Kingdom, ²AstraZeneca, Cambridge, United Kingdom

PS2-236 Accelerated Development of Novel Cell and Gene Therapies through Automated Production of Viral Vectors

<u>Mr. Maxime Rantz</u>¹, Dr. Wen Clifford², Dr. Jana Hersch³, Dr. Chris Smith³, Dr. Jessy Sheng⁴, Dr. Christoph Freiberg¹ ¹Genedata AG, Basel, Switzerland, ²Genedata Inc., London, UK, ³Genedata Inc., Boston, USA, ⁴Genedata Inc., San Francisco, USA

PS3-237 Structured Knowledge Management Platform for Bioprocess Development

Dr Eric Abellan¹, Dr. Wen Clifford², Dr. Maxime Rantz¹, Dr. Jana Hersch³, Dr. Jessy Sheng⁴, Dr. Christoph Freiberg¹ ¹Genedata AG, Basel, Switzerland, ²Genedata Inc., London, UK, ³Genedata Inc., Boston, USA, ⁴Genedata Inc., San Francisco, USA

PS1-238 Accelerating Upstream Process Development Through Automated Data Processing, Analysis, and Dynamic Model Assembly

<u>Mr Kallum Doyle^{1,2}</u>, Prof. Brian Glennon^{1,2}, Dr. Ioscani Jiménez del Val²

¹Applied Process Company (APC), Cherrywood, Ireland, ²University College Dublin (UCD), Belfield, Ireland

PS3-240 Time-Resolved Mass Spectrometry-Based Multi-Omics Characterisation of NISTCHO Cellular Function In Response To Nutrient Influx

<u>Mr. Dominik Hofreither</u>¹, Ms. Larissa Hofer², Ms. Laura Liesinger¹, Dr. Veronika Schäpertöns³, Ms. Jerneja Štor², Ao.Univ.Prof. Dr. Nicole Borth², Univ.Prof. Dr. Ruth Birner-Grünberger¹

¹Technical University of Vienna, Vienna, Austria, ²University of Natural Resources and Life Sciences, Vienna, Austria, ³University of Salzburg, Salzburg, Austria

- PS1-241 Rapid and high-throughput cell count & viability assessment from label-free images using CellAi software. Dr Alessandra Prinelli¹ 'Valitacell (Beckman Coulter), Dublin, Ireland
- PS2-242 Digital twin a tool for improving mAb productivity in continuous CHO cell culture

<u>Dr Seongkyu Yoon</u>¹, Mr Zhao Wang¹, Prof Yannis Kevrekidis² ¹University Of Massachusetts Lowell, Lowell, United States, ²Johns Hopkins University, Baltimore, United State

PS3-243 Simulation of the cryopreservation process and its effects on CHO-K1 cells by a hybrid model

<u>Mr Maycou Soares Zamprognio¹</u>, Prof. Jessica Whelan¹ ¹School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland

PS2-245 Generate Data, Use Data – Advanced Spent Media Analytics and Data Analysis

<u>Dr Tim Steffens</u>¹, Dr Mareike Schulz¹, Julia Engel¹, Maren Lehmkuhl¹, Dr Vera Ortseifen¹, Dr Sandra Klausing¹ ¹Sartorius Xell GmbH, Schloß Holte Stukenbrock, Germany, Germany

PS3-246 Development of a dissolved CO2 sensor in true single-use format

<u>Dr Stefan Bardeck</u>¹, Dr Sebastian Schmidt¹ ¹Mettler Toledo Process Analytics, Urdorf, Switzerland

PS1-247 Comprehensive meta-analysis of the CHO coding transcriptome

<u>Mr Markus Riedl¹</u>, Ms. Caterina Ruggeri^{1,2}, Dr. Nicolas Marx¹, Dr. Nicole Borth¹

¹University of Natural Resources and Life Sciences, Vienna, Austria, ²acib GmbH - Austrian Centre of Industrial Biotechnology, Graz, Austria

PS2-248 Integrating Kinetic Modelling with Process Measurements through Bayesian Filtering

<u>Ms Luxi Yu¹</u>, Dr. Ehecatl Antonio del Rio Chanona¹, Prof Cleo Kontoravdi¹

¹Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, United Kingdom

PS3-249 The Leap-In Transposase Platform: Past, Present and Future

<u>Dr Mario Pereira</u>¹, Dr Ferenc Boldog¹, Dr Claes Gustafsson¹, Dr Jeremy Minshull¹ *'ATUM, Newark, United States*

PS1-250 Effect of critical process parameter on site specific N-linked glycosylation of VRC0¹ produced in CHO

<u>Mr Jayanth Venkatarama Reddy</u>¹, Dr. Arjun Valiya Parambathu¹, Dr. Sumit Kumar Singh², Mr. Thomas Leibiger¹, Prof Eleftherios Papoutsakis¹, Prof Marianthi lerapetritou¹ ¹Department of Chemical Engineering, University Of Delaware, Newark, United States, ²School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India

PS2-251 Impact of Mesenchymal Stromal Cells Expansion Conditions on their Hematopoietic Support Capacity: A Transcriptomic Analysis

Miss Maria Catarina Carreira^{1,2,3}, Dr. André Branco^{1,2,3}, Dr. Miguel Casanova^{1,2,3}, MD. Carolina Smet⁴, Prof. Cláudia Lobato da Silva^{1,2,3}, Dr. Ana Fernandes-Platzgummer^{1,2,3} ¹Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ²Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ³Associate Laboratory i⁴HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ⁴Hospital São Francisco Xavier, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal

PS3-252 Unlocking Multiomics Potential with a High-Throughput Data Generation Protocol

<u>Mr David Catalán-Tatjer</u>¹, Dr Nicholas Cowie¹, Mr Kristian Jensen¹, Dr Jesús Lavado-García¹, Prof Lars Nielsen¹,² ¹Technical University Of Denmark, Kgs. Lyngby, Denmark, ²University of Queensland, Brisbane, Australia

PS1-253 In-depth metabolic characterisation at different phases of cell culture with a turnkey CE-ESI-HRMS workflow

<u>Dr Milla Neffling¹</u>, Dr. Erin Redman², Dr. Will Thompson², Dr. Kenion Blakeman², Dr. Stephanie Klaubert¹, Awab Nehela¹, Dr. Scott Mellors²

¹908 Devices, Boston, United States, ²908 Devices, Morrisville, United States

PS2-254 A mechanistical understanding of Producer Cell Line (PCL) approaches for AAV production using Metabolomics

<u>Dr Swetha Kumar</u>¹, Dr Adhvait M Shah¹, Dr. Laura Parisi², Dr. Bailin Zhang², Dr. Lilu Guo², Dr. Darrick Yu¹, Dr. Madhuresh Sumit¹, Dr. Jeong Lee¹ ¹Sanofi US Services Inc., Waltham, USA, ²Sanofi US Services Inc.,

Cambridge, USA

PS3-255 Driving by CHO genome-scale metabolic models (GEMs) towards digital bioprocessing

<u>Assoc. Prof. Dong-Yup Lee¹</u>, Dr. Seo-Young Park¹, Mr. Dong-Hyuk Choi¹, Mr. Jinsung Song¹, Mr. Sun-Jong Kim¹ ¹Sungkyunkwan University, Suwon, South Korea

PS1-256 RAMAN spectroscopy and off gas analysis data - the foundation for smart bioprocess development Dr Wolfgang Paul¹, Thomas Dahomais¹, Quentin Demeyere¹, Damien Legros¹, Bassem Ben Yahia¹ ¹UCB Pharma S.A., Braine L'alleud, Belgium

PS2-257 Accelerating high-performance and customizable media development through multivariate data analysis and in silico modeling

<u>Dr Seo-Young Park¹</u>, Dr. Dong-Yup Lee¹, Mr. Jisung Song¹, Mr. Dong-Hyuk Choi¹, Mr. Sun-Jong Kim¹, Mr. Chul-Hwan Park¹ ¹Sungkyunkwan University, Suwon-si, South Korea

PS3-258 Optimizing CD4+ T Cells Long-term Expansion Process in Stirred-tank Bioreactors: Impact of the Dissolved Oxygen Mr David Solbach¹, Dr. Francoise de Longueville², Dr. Silvia Vargas², Dr. Vincent Duffey² ¹Eppendorf SE Bioprocess, Juelich, Germany, ²Eppendorf Application Technologies S.A., Namur, Belgium

- PS1-262 Experimental design with Bayesian statistics to improve stem cell differentiation in small bioreactors Dr Iben Veland Halberg¹, Dr Søren Bertelsen² ¹Cell Therapy R&D, Novo Nordisk A/S, Maalov, Denmark, ²Automation & Process Optimisation, Novo Nordisk A/S, Måløv, Denmark
- PS3-264 Model-based optimisation of glycosylation control in antibody-producing CHO cells <u>Ms Sofia Gialamoidou¹</u>, Dr. Ioscani Jimenez Del Val¹

¹School of Chemical and Bioprocess Engineering, UCD, Dublin, Ireland

- PS1-265 Antibody Humanization with Predictive Design <u>Dr Mario Pereira</u>¹, Dr Sridhar Govindarajan¹, Dr Mark Welch¹, Dr Jeremy Minshull¹, Dr Claes Gustafsson¹ ¹ATUM, Newark, United States
- PS2-266 METHODS FOR CLONE GENERATION USING FLOW-BASED REPORTER SYSTEM AND HIGH THRUOGHPUT BEACON PLATFORM.

<u>Mr Victor Cairns</u>¹ ¹Sanofi, Framingham, MA, United States

PS3-267 Digital bioprocessing enables fed-batch design for intensification of rAAV production in insect cells <u>Cristina Rosa</u>¹, Nikolaus Virgolini^{1,2}, Miguel Graça^{1,2}, Ricardo Correia^{1,2}, Dr Ines Isidro^{1,2} ¹*iBET*, Oeiras, Portugal, ²*ITQB-NOVA*, Oeiras, Portugal

Theme 04. Transitioning from Development to Manufacture

Poster Session 1, June 24, 2024, 2:15 PM - 3:45 PM Poster Session 2, June 24, 2024, 7:30 PM - ⁹:00 PM Poster Session 3, June 25, 2024, 2:30 PM - 4:00 PM

ESACT	PS1-268	Addressing the question of cellular heterogeneity - Microfluidic single-cell cultivation for mammalian bioprocesses Dr Julian Schmitz ¹ , Mr. Boris Yermakov ² , Dr. Oliver Hertel ¹ , Dr. Nadiya Romanova ¹ , Prof. Dr. Thomas Noll ¹ , Prof. DrIng. Alexander Grünberger ² ¹ Bielefeld University, Bielefeld, Germany, ² Karlsruhe Institute of Technology, Karlsruhe, Germany
ESACT	PS2-269	Advantages of CHO cell process intensification in state-of- the-art single-use bioreactors Dr. Markus Schulze ¹ , Husemann Ute ¹ , Dr Gerhard Greller ¹ , Dr Naomi de Almeida ¹ ¹ Sartorius, Göttingen, Germany
ESACT	PS3-270	In-situ Monitoring of Dissolved Carbon Dioxide in Bioprocessing: Two Years of Research and Application Insights Mr Giovanni Campolongo ¹ ¹ Hamilton Bonaduz Ag, Domat/Ems, Switzerland
ESACT	PS1-271	PAT to Optimize the Cost, Consistency and Yield of Cultivated Meat Production Dr Charlotte Hughes ¹ , Mr Aniekan Esenam ¹ ¹ Hamilton, Bonaduz, Switzerland
	PS2-272	Single-Use Centrifugation – Aiming at Sustainable and Scalable Harvest Procedures <u>Mr Johannes Wirth¹</u> , Dr. Verena Vanessa Fischer ¹ ¹ Boehringer Ingelheim Pharma Gmbh & Co. KG, Biberach, Germany
	PS1-274	Mechanistic and hybrid modelling in bioreactor digital twins Dr Sarah Fadda ¹ , Dr Sarwat Khattak ² ¹ Siemens DI PA SW, London, United Kingdom, ² Biogen, Durham, United States
ESACT	PS2-275	Integrated clone selection and process development approaches for early TOX material production <u>Mr Jeremie Kerbrat¹</u> ¹ UCB, Slough, United Kingdom

PS3-276 Towards Computational Fluid Dynamics based methodology to accelerate bioprocess optimisation Mr Vishal Kumar Singh¹, Dr. Ioscani Jimenez Del Val², Prof. Jarka Glassey³, Dr. Fatemeh Kavousi¹ ¹University College Cork, Cork, Ireland, ²University College Dublin, Dublin, Ireland, ³Newcastle University, Newcastle upon Tyne, UK

PS1-277 Generalizing cell culture models from fed-batch to continuous using metabolic knowledge

Miss Mariana Monteiro¹, Stacy Bediako³, Gregory Nierode³, Pavlos Kotidis², Cleo Kontoravdi¹ ¹Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW⁷ ²AZ, United Kingdom, ²BioPharm Process Research, BioPharm Product Development & Supply, R&D Medicinal Science & Technology, GlaxoSmithKline, Stevenage SG¹ ²NY, United Kingdom, ³Biopharmaceutical Drug Substance Development (BDSD), GSK, Upper Merion, USA

PS2-278 Scale-Down Model Qualification for the Commercial Production of a Fusion Protein

<u>Dr Aoife Keogh</u>¹, Mr Ciarán Mauerhofer¹, Dr Raymond Donnelly¹, Ms Anne-Marie Molloy¹ ¹Bristol-Myers Squibb, Dublin, Ireland

PS3-279 Cell culture media optimization to achieve high AAV productivity

<u>Dr Benben Song</u>¹ ¹Cytiva, Marlborough, United States

PS1-280 Tackling The Blue: Modifications in Culture Media To Reduce Formation Of Blue Coloration in Bioprocesses

<u>Mr Andreas Unsoeld¹</u>, Ms. Elena Bollgoenn¹, Ms. Dr. Amandine Calvet¹, Mr. Dr. Michael Loeffler¹, Ms. Dr. Lisa Junghans¹, Mr. Sebastian Puengel¹, Mr. Dr. Erik Arrango Gutierrez¹, Mr. Dr. Daniel Lakatos¹

¹Boehringer Ingelheim Bioprocess Development Biologics, Biberach, Deutschland

PS2-281 FOLI-REC: Recombinant equine chorionic gonadotropin hormone for veterinary use

<u>Mr Sebastián Antuña¹</u>, Ms María Belén Tardivo¹, Mr. Carlos Javier Villarraza²,⁴, Dra. María Celeste Rodríguez²,⁴, Mr. Pablo Mussio²,⁴, Dr. Diego Fontana¹,²,⁴, Mr. David Saucedo¹, Dr. Luciano Cattáneo³, Dra. Natalia Ceaglio²,⁴, Dr. Claudio Prieto Claudio Prieto¹,²

¹Biotecnofe SA, Santa Fe, Argentina, ²Universidad Nacional del Litoral (UNL), Facultad de Bioquímica y Ciencias Biológicas (FBCB), Centro Biotecnológico del Litoral (CBL), Santa Fe, Argenitna, ³Universidad Nacional del Litoral (UNL), Facultad de Ciencias Veterinarias (FCV), Esperanza, Argentina, ⁴Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina

PS3-282 Scalable, serum-free viral vector production in a high cell density bioreactor Mrs Laura Siedler¹

¹Univercells Technologies, Nivelles, Belgium

PS2-284 Dissolved Carbon Dioxide in Addition to Dissolved Oxygen for In-situ Monitoring of Hybridoma Cell Culture

<u>R. Ph. Veronika Gassenmeier¹</u>, Prof. Dr.-Ing. Björn Frahm¹, Mr Giovanni Campolongo²

¹Biotechnology & Bioprocess Engineering Ostwestfalen-Lippe. University of Applied Sciences and Arts Department of Life Science Technologies, Lemgo, Germany, ²Hamilton Bonaduz Ag, Domat/ Ems, Switzerland

PS3-285 Optimized CHO cell Feed Medium without Copper Precipitation

<u>Dr Pranjal Gohad¹</u>, Ms Renee Vu¹, Dr. Ishamel Ordonez¹, Mr Xianyu Ju², Ms Yingying Ly², Mr Yinshan Tan² ¹*Fujifilm Irvine Scientific, Irvine, United States,* ²*Fujifilm Irvine Scientific Suzhou, Suzhou, China*

PS1-286 Effects of cell residence time on IgG1 production in smallscale perfusion cultures of CHL-YN cells

<u>Mr Shohei Sakai¹</u>, Ms. Sayaka Nagae¹, Mr. Hiromu Kunita¹, Dr. Noriko Yamano-Adachi^{1,2,3}, Prof. Takeshi Omasa^{1,2,3} ¹Graduate School of Engineering, Osaka University, Osaka, Japan, ²Institute for Open and Transdisciplinary Research Initiatives, Japan, ³Manufacturing Technology Association of Biologics, Japan

PS2-287 Minimal clone to clone variation removes need for clone screening and clone specific bioprocess optimizations. <u>Ms. Laura Salse Guiu¹</u>, Prof. Steffen Goletz¹, Dr. Lasse Ebdrup Pedersen¹ ¹Technical University Of Denmark, Kongens Lyngby, Denmark PS3-288 Shortening the cell line development (CLD) timeline with an improved clone stability assay <u>Dr. Seungjo Park¹</u>, Dr. Christopher Tsiros¹, Dr. Sheffali Dash¹, Dr. Zhou Jiang¹

¹Cytiva, Marlborough, United States

PS1-289 Developing a platform for single cell cloning of the Pro10[™] cell line for AAV manufacture Ms Weijia Liu¹, Ms Cristina Rigau Granes¹, Dr Conrad Vink¹

<u>Ms Weijia Liu</u>¹, Ms Cristina Rigau Granes', Dr Conrad Vink' ¹Askbio, Edinburgh, United Kingdom

PS2-290 Implementation of Quality by Design Principles for Influenza A Virus Production

<u>Ms Tilia Zinnecker</u>¹, Ms Kristin Thiele², Prof. Udo Reichl¹,³, Prof. Yvonne Genzel¹ ¹Max Planck Institute For Dynamics Of Complex Technical Systems, Magdeburg, Germany, ²Sartorius Stedim Biotech GmbH, Ulm, Germany, ³Otto-von-Guericke-University, Magdeburg, Germany

PS3-291 Optimizing Recombinant Adeno-Associated Virus (rAAV) Production: Unraveling the Impact of the N-1 Seed Train Dr Johanna Wagner¹, Dr Sinisa Petrik¹, Mr Matthias Boscher¹, Mr Jared Babic¹, Ms Beatriz Larena Carnio¹, Ms Dila Bitnel¹, Ms Anita Heinlein¹, Ms Christine Zach¹, Mr Sebastian Ritter¹, Mr Matthias Gora¹, Mr Tobias Klötzler¹, Dr Alexandra Schoberth¹, Mr Karl Heller¹, Mr Ahmed Youssef¹ ¹Ascend GmbH, Planegg, Germany

PS1-292 Condensing the Cell Line Development Processes – Nimble Strategies for Increasing Efficiency

<u>Dr Clare Lovelady</u>¹, Dr Jie Zhu¹, Dr John Patrick Mpindi¹, Dr Kerensa Klottrup-Rees¹, Dr Sarah Dunn¹, Dr Diane Hatton¹ ¹Astrazeneca, Cambridge, United Kingdom

PS2-293 Detecting Microbial Cell Culture Contamination by Measuring Nicotinic Acid to Nicotinamide Ratio At-Line

<u>Dr Kenion Blakeman</u>¹, Ji Young Anderson², Scott Miller², Alice Ng³, Jiayi Huang³, Meenubharathi Natarajan³, Yie Hou Lee³, Rohan Williams³, Paul Barone⁴, Jacqueline Wolfrum⁴, Stacy Springs⁴

¹908 Devices, Morrisville, United States, ²908 Devices, Boston, United States, ³SMART Camp, Singapore, ⁴MIT Center for Biomedical Innovation, Boston, United States

PS3-294 Development of a robust process for pilot scale AAV production using a transient transfection system

<u>Dr Jianfa Ou¹</u>, Dr. Yawen Tang¹, Mr. Alexander Williams¹, Ms. Roseanna Shimansky¹, Mr. Gregory Keil¹, Dr. Jongchan Lee¹, Mr. Michael Borys¹, Dr. Anurag Khetan¹ ¹Bristol Myers Squibb, Devens, United States

DS1-295	Accelerating Clinical Readiness in Gene Therany
1 31-233	Accelerating enficience receiver and enter merupy
	<u>Dr Marie Clincke¹</u> , Dr Richard Liu ¹ , Dr Claudia Paindelli ¹ , Ms
	Priyanka Gupta ¹ , Ms Zeynep Bor Tekdemir ¹ , Ms Marie Jubault ¹ ,
	Mr Douglas Blanton ² , Mr Alexandre Valancin ¹ , Dr Kyle Zingaro ¹
	¹ UCB Pharma, Braine-l'Alleud, Belgium, ² UCB BioSciences, Boston,
	United States

PS3-297 Microfluidic perfusion reactors used for cell line stability evaluation

<u>Dr Jean-Marc Bielser</u>¹, Mr. Loïc Chappuis¹ ¹Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland

PS1-298 Advancing Intensified Process Development for rAAV production through Ambr250

<u>Ms Paula Mateus Semedo¹</u>, Ms. Zeynep Bor Tekdemir¹, Mr. Daniel Sanchez¹, Mr. Douglas Blanton¹, Ms. Priyanka Amba Gupta¹, Dr. Kyle Zingaro¹, Dr. Nic Preyat¹ ¹UCB Pharma, Belgium

PS2-299 Intensified, Integrated, and Connected Processing for mAbs Purification: From Robust Process Development to Agile Biomanufacturing

<u>Dr Sanket Jadhav</u>¹, Mr. Abijar Bhori², Ms. Priyanka Gupta¹, Mr. Himanshu Gadgil² ¹Sartorius, Netherlands, ²Enzene Biosciences Ltd, India

PS3-300 Combinatorial Effects of Temperature and Osmolality on Cell Culture Performance

<u>Mrs Syazana Mohamad Pauzi¹</u>, Professor Cleo Kontoravdi¹ ¹Imperial College London, London, United Kingdom

PS1-301 Accelerating process transfer into a new large-scale cell culture facility through CFD and DoE <u>Mr Chandrahas Sampelli</u>¹, Dr Christoph Hold¹, Dr Michael Thiele¹ ¹Teva Biotech, Ulm, Germany

PS2-302 Development of a universal Raman spectroscopy model for real-time monitoring of cell culture production parameters Dr Laetitia Macon¹, Dr Sylvain TRIGUEROS¹, Ms Gaelle BORDES¹ 'Sanofi, Vitry sur Seine, France

PS3-303 TheraPRO® CHO Expansion Media accelerates antibody production with user-friendly design for streamlined protein production. <u>Miss. loanna Zormpa</u>, Dr Ivan Carubelli¹, Aymaan Rahman¹, Harinath Makanaboina¹, Kenneth Low²

¹Lonza R&D Bioscience, Slough, United Kingdom, ²Lonza R&D Bioscience, Walkersville, United States

PS1-304 Transcriptomic Features Reveal Molecular Signatures Associated with Recombinant Adeno-associated Virus Production in HEK293 Cells

<u>Dr Seongkyu Yoon¹</u>, Ms Yongdan Wang¹ ¹University Of Massachusetts Lowell, Lowell, United States

PS2-305 Need for Speed AND Quality: Smart Automation Selects Better Producer Clones Faster

<u>Dr Karsten Winkler¹</u>, Ms. Berit Brosemann¹, Ms. Andrea Franke¹, Ms. Anika Bauer¹, Ms. Lisa Schneid¹, Ms. Denise Resch¹, Mr. Daniel Rehm¹, Dr. Susanne Seitz¹, Dr. Annett Hillemann¹, Dr. Thomas Rose¹, Dr. Volker Sandig¹ ¹ProBioGen AG, Berlin, Germany

PS3-306 From lab automation towards model-based process control and effective process development

<u>Dr. Wolfgang Sommeregger</u>¹, Mrs Nataša Gutmann¹, Mr. Marcus Kirschner¹, Mrs. Angélique Schmid² ¹Qubicon AG, Wien, Österreich, ²Ichnos Sciences SA, La Chaux-de-Fonds, Switzerland

PS1-307 Economic modelling of magnetic bead-based mAb manufacturing

<u>Dr Nils Brechmann</u>¹, Dr. Kristofer Eriksson¹, Mr. Torbjörn Pettersson¹ ¹Magic Bioprocessing, Uppsala, Sweden

PS2-308 Enhancing Downstream AAV Processing: Advancements in Robust Filtration and Chromatographic Operations

Dr Rute Castro, Dr André Nascimento¹,², Dr. Sónia Mendes¹,², Dr. Tiago Faria¹,², Dr. Ricardo Silva¹,², Dr. Franziska Bollmann³, Dr. Axel Thiefes³, Dr. Marc Noverraz⁴, Dr. Piergiuseppe Nestola⁴, Mr. Ažbe Žnidaršič⁵, Dr. Cristina Peixoto¹,²

¹*iBET, Oeiras, Portugal, ²ITQB-NOVA, Oeiras, Portugal, ³Sartorius Stedim Biotech GmbH, Göttingen, Germany, ⁴Sartorius Stedim Switzerland, Tagelswangen, Germany, ⁵Sartorius BIA Separations, Ajdovscina, Slovenia*

PS3-309 Enhancing Protein Titer in CHO Cells with a Novel Protein-Free Two-Part Feed System

<u>Mrs Sarya Mansour</u>¹, Dr. Gino Stolfa¹, Dr. Anna Barbara-Hachmann¹, Mr. Alex Fox¹, Mr. Nick Drury¹, Mr. Ryan Boniface¹ ¹Thermo Fisher Scientific, Grand Island, United States

PS1-310 Generation of High-Throughput N-1 Perfusion Dr Stefan Wieschalka¹, Lisa Stepper¹, Sarah Kallemeier¹, Sophie

Moormann¹ ¹Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Deutschland

PS2-311 Further Accelerating Biologics Development from DNA to IND: Journey from COVID-19 to All Biologics Programs Dr Sam Zhang¹, Dr. Kee Wee Tan¹, Mr. Pengfei Ji¹, Dr. Hang Zhou¹, Dr. Weichang Zhou¹ ¹Wuxi Biologics, Shanghai , China

PS3-312 Downstream process development of Adenovirus-like particles (ADDomer) for snakebite therapy

Dr Rute Castro¹, Dr Raquel Arinto-Garcia^{1,2}, Ms Cláudia Paiva^{1,2}, Mr Emerson Dilla³, Mr Justin Sargunas⁴, Dr Mafalda Moleirinho^{1,2}, Prof. Paula Alves^{1,2}, Dr Cristina Peixoto^{1,2}, Dr António Roldão^{1,2}

¹IBET, Oeiras, Portugal, ²ITQB NOVA, Oeiras, Portugal, ³Wageningen University & Research, Wageningen, The Netherlands, ⁴Johns Hopkins University, Baltimore, United States

PS1-313 Reaching Cell Culture Process Productivity Edge and Pushing it Further

<u>Mr Bassem Ben Yahia¹</u>, Mr Antoine PIEDNOIR¹, Mr Thomas Dahomais¹, Ms Laetitia Morel¹, Mr Neil Kearney¹, Mr Arnaldo de Souza¹, Mr Wolfgang Paul¹ ¹UCB Pharma S.A., Braine L'alleud, Belgium

PS2-314 Data-driven feed strategy optimisation and scale-up of mAb-expressing CHO cell line bioprocess.

<u>Mr Jeremie Barbau¹</u>, Ms Milla Neffling¹, Dr Christopher Schultz², Ms Bethany Kerr², Dr William Morgan-Evans², Ms Samantha Colbeck², Ms Ji Young Anderson-Czajkowski¹, Dr Michael Hartlep³, Dr Wolfgang Kuennecke³, Dr Graziella Piras¹ ¹908 Devices, Boston, United States, ²Centre for Process Innovation (CPI), Darlington, United Kingdom, ³908 Devices GmbH, Braunschweig, Germany

PS3-315 PAT-Enhanced Perfusion Process by In-line Raman Probe and On-line Nanoplasmonic Sensor.

<u>Mr Maxime Hervé¹,</u>³, Ms. Michaela Dölle¹,³, Dr. Meeri Mäkinen¹,³, Dr. Thuy Tran²,³, Prof. Véronique Chotteau¹,³ ¹Cell Technology group, Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH - Royal Institute of Technology, Stockholm, Sweden, ²ArgusEyes Sensor solutions, Linköping, Sweden, ³AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden

PS1-316 Case study: Improvement of powder media robustness for CHO perfusion cell culture

<u>Mrs Nandita Vishwanathan¹</u>, Mr Thomas Vuillemin, Dr Martin Jordan, Mr Raphael Guillot, Ms Prudence Bourlier, Ms Sandrine Richard, Dr Jean-Marc Bielser, Arnaud Perilleux, Jonathan Souquet

¹Merck Serono Sa, Corsier-sur-vevey, Switzerland

PS2-317 Achieving High Productivities Through Bioreactor Optimization at Lower Peak Cell Densities Dr Luis Rodriguez¹, Ociel Ferreyra¹, Ericka Agredano¹, Joshua Yokoo¹, Kristi Wong¹, Catherine Nguyen¹, Isabelle Jones¹, Raul Tholley¹ ¹Fujifilm Irvine Scientific, Irvine, United States

PS3-318 Advancements in Microcarrier based stem cell culture process and effortless transition to 10L single-use bioreactors Ms Namitha Haridas¹

¹Sartorius, Ann Arbor, United States

PS1-319 Delivering CMC Initiatives using Design for Manufacturing, Modern Design of Experiments, Prediction, and Machine Learning

<u>Dr. Tiffany Rau¹</u>², Dr. Philip Ramsey³ ¹Bio Pharma Technical Consulting, Ltd , Cork, Ireland, ²Rau Consulting, LLC , West Lafayette, United States, ³University of New Hampshire, United States

PS2-320 Reduction of LMW species during upstream process

<u>Mr Thomas Vuillemin</u>¹, Dr Martin Jordan¹, Dr Nandita Vishwanathan¹, Dr Jean-Marc Bielser¹, Mr Arnaud Perilleux¹, Dr Jonathan Souquet¹

¹Merck Serono SA (an affiliate of Merck KGaA, Damstadt, Germany), Global Drug Substance Development, Fenil-sur-Corsier, Switzerland

PS3-321 Adeno-associated Virus Production in Suspension Cell Culture Using Bioprocess Control Systems and BioBLU® Single-Use Bioreactors

<u>Mr David Solbach¹</u>, Mr Jorge Escobar² ¹Eppendorf SE Bioprocess, Juelich, Germany, ²Eppendorf Inc, Enfield, USA

PS1-322 Influence of animal origin free (AOF) peptone supplementation on CHO productivity and glycosylation profiles

<u>Maren Grün¹</u>, Ashwin Gurunathan², PhD Anna-Barbara Hachmann³, Bilal Mughal², Saranya Chitturi², Meagan Haynes², Alexander Fox³, Megan Pajak-Lee³, Stacy Holdread², PhD James Brooks²

¹Thermo Fisher Scientific, Reinach, Switzerland, ²Thermo Fisher Scientific, Hunt-Valley, United States of America, ³Thermo Fisher Scientific, Grand Island, United States of America

PS2-323 Seed Train Intensification and Production Process Automation for Pilot-Scale Fed-Batch and Perfusion Processes

<u>Mr Jan Ott</u>¹, Vivian Ott¹, Christopher Brau², Sandra Beyer³, Prof. Dr. Dieter Eibl¹, Prof. Dr. Regine Eibl¹ ¹ZHAW Zurich University of Applied Sciences, Wädenswil, Switzerland, ²Thermo Fisher Scientific, Grand Island, United States, ³Thermo Fisher Scientific, France

PS3-324 Development of a high-titer Bi-paratopic tetravalent diabody-Fc-Fab: IcoCell Line, Design for Manufacturability and Modern DOE

<u>Dr. Eva-maria Tombak¹</u>, Evaliisa Sejev¹, Jelizaveta Geimanen¹, Katrin Orro¹, Andres Männik¹, Mihhail Kurašin¹, Kristo Kuus¹, Kiira Gildemann¹, Nele Tamberg¹, Evelin Väljaots¹, Shane Miersch², Sachdev Sidhu²

¹Icosagen Cell Factory Oü, Tartu Maakond , Estonia, ²School of Pharmacy, University of Waterloo , Waterloo, Canada

PS1-325 Chicken Feather Follicle Cells as a source of fat for cultivated meat

<u>Mr Hélder Bandarra-Tavares</u>^{1,2,3}, Prof. Pedro Fonte³, Dr. Ana Fernandes-Platzgummer^{1,2}

¹Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ²Associate Laboratory i⁴HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ³Centre for Marine Sciences (CCMAR), University of Algarve, Faro, Portugal

PS2-326 Development of a scalable platform for the production of bovine fat for cultivated meat

<u>Mr Hélder Bandarra-Tavares</u>^{1,2,3}, Mr. Pedro Agostinho^{1,2}, Prof. Pedro Fonte³, Dr. Ana Fernandes-Platzgummer^{1,2} ¹Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ²Associate Laboratory i⁴HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ³Centre for Marine Sciences (CCMAR), University of Algarve, Faro, Portugal

PS3-327 Scale-up or Scale-down? - Biomanufacturing Process Intensification by Converting Fed-batch Into High-density Perfusion Processes

<u>Ms Caroline Noack¹</u>, Mr. Lukas Hostettler¹, Mr Frederic Houioua¹ *Novartis, Basel, Switzerland*

PS1-328 Continuous Production of Influenza VLPs Using IC-BEVS: a Multi-Stage Bioreactor Approach

<u>Dr Ricardo Correia</u>^{1,2}, Ms Taja Zotler³, Mr Miguel Graça^{1,2}, Dr Bárbara Fernandes^{1,2}, Dr Gorben Pijlman³, Dr António Roldão^{1,2} ¹*iBET*, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal, ²ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal, ³Wageningen University Research, Wageningen, The Netherlands

PS2-329 Massive hiPSC-derived Cardiomyocyte Production for Regenerative Medicine: combining WNT Activation and Oxygen Modulation in Bioreactors

<u>Miss Lara Inocêncio¹</u>,², Mr Pedro Vicente¹,², Miss Beatriz Gamelas¹,², Mr. Asier Ullate-Agote³, Mr Olalla Iglesias García³, Mr Patxi Martin-Uriz³, Mr Felipe Prósper³, Mr Manuel M Mazo Vega³, Prof. Paula Alves¹,², Dr Margarida Serra¹,² ¹Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal, ²Instituto de Tecnologia Química e Biológica, Oeiras, Portugal, ³CIMA, Pamplona, Spain

31 Optimizing Mammalian Cell Culture Strategies: Validation of a Model-Based Platform for Medium and Feeding Design

Dr Ivan Paredes^{1,3}, Mr. Temístocles Molina^{1,3}, Mr. Aarón Canales^{2,3}, Ms. Francisca Pizarro^{2,3}, Mr. Bastian Herrera^{2,3}, Ms Isidora Prat^{1,3}, Dr J. Cristian Salgado^{2,3}, Dr. Ziomara Gerdtzen^{1,3} ¹Mammalian Cell Culture Lab - MCCL, Department of Chemical Engineering, Biotechnology and Materials DIQBM, University of Chile, Santiago, Chile, ²Process Modeling and Distributed Computing Lab - PMDCLab, Department of Chemical Engineering, Biotechnology and Materials DIQBM, University of Chile, Santiago, Chile, ³Centre for Biotechnology and Bioengineering CeBiB, University of Chile, Santiago, Chile

PS2-332 Advancing Manufacture of hiPSC-Hepatocytes with improved functionality: a nature-inspired bioprocess

<u>Dr Margarida Serra</u>¹², Dr Joana Almeida¹,², Mr Pedro Vicente¹,², Ms Inês Crespo¹,², Dr Nikolaus Virgolini¹,², Dr Inês Isidro¹,², Dr Juan R. Rodriguez-Madoz³, Dr Felipe Prosper³, Dr Pedro Baptista⁴, Prof Paula Alves¹,²

¹*iBET- Instituto De Biologia Experimental E Tecnológica, Oeiras, Portugal, ²ITQB-NOVA, Oeiras, Portugal, ³UNAV, Pamplona, Spain, ⁴IIS Aragón, Zaragoza, Spain*

PS3-333 Single-Use Bioreactors designed according to traditional bioreactor principles facilitate transition from development to production scale.

<u>Dr Alicja Zimmer¹</u>, Mr. Dai Quach², Mr. Jorg Bolder¹, Dr. Sufia Karim²

¹Getinge AB, Delft, Netherlands, ²Aragen Biosciences Inc., Morgan Hill, United States of America

PS1-334 Structural identifiability and parameter estimation of dynamic metabolic models used for cell culture media optimization

<u>Aaron Canales</u>^{1,3}, Francisca Pizarro^{1,3}, Bastian Herrera^{1,3}, Ivan Paredes^{2,3}, Isidora Prat^{2,3}, Temístocles Molina^{2,3}, Dr. J. Cristian Salgado^{1,3}, Dr. Ziomara P. Gerdtzen^{2,3}

¹Process Modeling and Distributed Computing Lab - PMDCLab, Department of Chemical Engineering, Biotechnology and Materials DIQBM, University of Chile, Santiago, Chile, ²Mammalian Cell Culture Lab - MCCL, Department of Chemical Engineering, Biotechnology and Materials DIQBM, University of Chile, Santiago, Chile, ³Centre for Biotechnology and Bioengineering CeBiB, University of Chile, Santiago, Chile

PS2-335 Advancing Biomanufacturing Excellence: Harnessing Model Predictive Control for Optimal Process Efficiency and High-Quality Product Outputs

<u>Francisca Pizarro^{1,3}</u>, Aaron Canales^{1,3}, Bastian Herrera^{1,3}, Dr. Ziomara P. Gerdtzen^{2,3,4,5}, Dr. J. Cristian Salgado^{1,3} ¹Process Modeling and Distributed Computing Lab - PMDCLab, Department of Chemical Engineering, Biotechnology and Materials DIQBM, University of Chile, Santiago, Chile, ²Mammalian Cell Culture Lab - MCCL, Department of Chemical Engineering, Biotechnology and Materials DIQBM, University of Chile, Santiago, Chile, ³Centre for Biotechnology and Bioengineering CeBiB, University of Chile, Santiago, Chile, ⁴Center of Interventional Medicine for Precision and Advanced Cellular Therapy - IMPACT, Santiago, Chile, ⁵Millennium Nucleus Marine Agronomy of Seaweed Holobionts - MASH, Santiago, Chile

PS3-336 Lot To Lot Consistency of AOF Peptones and Application of Key Driver Identification Service (KDI)

<u>Mr Ashwin Gurunathan</u>¹, Neelanjan Sengupta¹, Juliet Macharia¹, Nathan Cordell¹, Stacy Holdread¹, James Brooks¹ ¹Thermo Fisher Scientific, Hunt Valley, United States

PS1-337 Accelerating CHO Bulk Harvest Testing: A Complete Set of Rapid Methods for Adventitious Agent Detection

<u>Dr Anna Woodward</u>¹, Ms Melisa Wilson², Dr Manjula Aysola², Dr Pamela Hamill¹, Dr Alison Armstrong¹ ¹Merck, Glasgow, United Kingdom, ²Merck, Rockville, USA PS2-338 Impact of ICH Q⁵A revision on quality control testing and virus safety strategies

<u>Dr Anna Woodward¹</u>, Dr Manjula Aysola², Mr Steven McDade¹, Dr Alison Armstrong¹ ¹Merck, Glasgow, United Kingdom, ²Merck, Rockville, USA

PS3-339 Novel vector system for one-step generation of diverse vector assemblies, enhancing titres of multispecific antibodies

<u>Dr Stephen Jaffé¹</u>, Miss Changhavi Ragurajan¹, Dr Alice Seleiro¹, Miss Tejal Bhure¹, Dr Michael Anbar¹, Dr Bernie Sweeney¹ ¹Lonza, Cambridge, United Kingdom

- PS1-340 Cell culture-based bioprocess development and simplification for Influenza A virus Mrs Wiebke Holste¹, Dr.-Ing. Claudius Seitz¹, Prof. Dr. Holger Ziehr¹ ¹Fraunhofer Institute for Toxicology and Experimental Medicine, Braunschweig, Germany
- PS2-341 Vision, Planning, and Implementation of a Fully Automated, Bench-Scale Bioreactor Platform

<u>Dr Frank Ritacco¹</u>, John Czukkerman¹, Kyle Doce¹, Evelyn Schleicher¹, Brandon Veres¹, Dr. Hanne Bak¹, Dr. Shawn Lawrence¹

¹Regeneron Pharmaceuticals, Tarrytown, United States

Theme 05. Innovate or Die - Technology Innovation

Poster Session 1, June 24, 2024, 2:15 PM - 3:45 PM Poster Session 2, June 24, 2024, 7:30 PM - 9:00 PM Poster Session 3, June 25, 2024, 2:30 PM - 4:00 PM

> PS3-342 Innovate or Die: A Business Methodology for Biomanufacturing Innovation Strategy and Deployment Mr Martijn Wapenaar¹ ¹Johnson & Johnson, Leiden, Netherlands

PS1-343 Dielectric spectroscopy as PAT tool to monitor specific growth rate and increase monoclonal antibodies production

<u>Miss Adèle Schini¹</u>, Dr. Bruno Ebel², Dr. Emmanuel Guedon², Dr. Laurent Jourdainne¹

¹*Millipore S.A.S., an affiliate of Merck KGaA, Darmstadt, Germany,* ²*Laboratoire Réactions et Génie des Procédés (LRGP), Vandœuvrelès-Nancy, France*

PS2-344 Hollow fiber-based cell retention: Recent advancements to reduce product retention in perfusion cell culture

<u>Dr Patrick Romann¹</u>, Dr Jean-Marc Bielser², Prof. Dr. Thomas K. Villiger³, Prof. Dr. Andrew L. Zydney⁴, Mr. Philip Giller³, Dr Antony Sibilia¹

¹Levitronix GmbH, Zürich, Switzerland, ²Merck Serono SA, Corsiersur-Vevey, Switzerland, ³University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland, ⁴Pennsylvania State University, Pennsylvania, USA

PS3-345 Tailoring an intensified fed-batch process to large scale manufacturing needs

<u>Dr Christian Kaisermayer¹</u>, Dominik Schieman², Nuno Buxo Carinhas², Kristina Kliche¹ ¹Novartis, Langkampfen, Austria, ²Novartis, Basel, Switzerland

- PS1-346 Unlocking Process Insights: High-Throughput Miniaturized Cell Culture System for Data-Rich Process Modelling Dr Vishwanathgouda Maralingannavar¹, Ms Alexandra Gheorghe¹, Dr Sandeep Ranpura¹, Dr Colin Jaques¹, Dr Deniz Demirhan¹ ¹Lonza Biologics Plc, Slough, United Kingdom
- PS3-348 Automation of perfusion process for high cell densities: Maintaining constant cell specific perfusion rate (CSPR) Mr Niklas Welzenbach¹, Mr Lisa Wolowczyk¹, Ms Mona Bausch¹, Mr Luis Ayala¹, Dr Jochen Sieck¹ ¹Merck Life Science KGaA, Darmstadt, Germany

- PS2-350 Assessment of cloning efficiency and error rates of various single-cell dispensing technologies <u>Ms Olga Rimkevich¹</u>, Mr. Sven Loebrich¹ 'Mural Oncology, Waltham, United States
- PS3-351 Process Intensification Strategies to Improve Process Economics in Biologics Development and Manufacturing Mr Madhava Ram Paranandi¹, Mr Jagadeesh Kanagala¹ ¹Kemwell Biopharma, Bengaluru, India

PS1-352 Intensified production of recombinant vesicular stomatitis virus-based vectors by tangential flow depth filtration

<u>Mr Sven Göbel</u>¹, Mr. Lars Pelz¹, Ms. Rachel Legmann², Dr Jennifer Altomonte³, Prof. Amine Kamen⁴, Prof. Udo Reichl¹, Dr. Yvonne Genzel¹

¹Max-Planck Institute, Magdeburg, Germany, ²Repligen, Waltham, United States, ³Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany, ⁴Department of Bioengineering, McGill University, Montréal, Canada

PS2-353 Automated Cell Line Development: Identifying Top Candidate Clones More Efficiently

Dr Michael Hoffman¹, Zach Goldblatt¹, Jason Vitko², Thomas King², Tiffany Mclamarrah², Jen Tedstone², Hope Divello¹, Steve McLellan¹, Victor Cairns², Jack Scarcelli², Christine DeMaria¹ ¹Sanofi - Cell Line & Cell Bank Development, Framingham, United States, ²Sanofi - Cell Science & Technology, Framingham, United States

PS3-354 Pilot Scale Bioreactor Design for Dynamic Perfusion with Tangential Flow Filtration

<u>Dr Nicholas Guros</u>¹, Alex Gadberry¹, Elise Woodall¹, Michael Mollet¹

¹AstraZeneca, Gaithersburg, United States

PS1-355 Promises and pitfalls of process intensification implementation Dr Patrick Mayrhofer¹

¹Novartis, Schaftenau, Austria

PS2-356 The Future of Making Cell Culture Media

<u>Ms. Kaitlynn Bayne</u>¹, Mr. Tom Fletcher¹, Mr. Bryan Tamashiro¹, Miss Brooke West¹ ¹Fujifilm Irvine Scientific, Santa Ana, United States

PS3-357 Advancing Cell Culture Media Preparation in CDMOs <u>Ms. Kaitlynn Bayne</u>¹, Mr. Chris Cline², Mr. Mark Patton², Mr. Scotty Bailey², Miss Sharyn Farnsworth²

¹Fujifilm Irvine Scientific, Santa Ana, United States, ²Fujifilm Diosynth Biotechnologies, Morrisville, United States

PS1-358 Raman-based Lactate Feeding Impact on Culture Characteristics and Product Quality in Mammalian Cell Cultures

<u>Dr Stephanie Klaubert</u>¹, Mr. Awab Nehela¹ ¹908 Devices, Boston, United States

PS3-360 Off-Gas based Soft-Sensor for Real-Time Monitoring of Biomass and Metabolism in CHO Continuous Fermentation Processes

<u>Mr Tobias Wallocha¹</u>, Dr. Oliver Popp¹ ¹Roche Diagnostics GmbH, Pharma Research and Early Development, Penzberg, Germany

PS1-361 Modular approaches to integrated and continuous biomanufacturing improve supply chain agility

John Raven¹, Graeme Burton¹, Robyn Hoare¹, Sam Whitwam¹, Richard Lugg¹, Charlie Heise¹, Terri Dover¹, Tibor Nagy¹, Michelle Lyons¹, Benjamin Hastings¹, Caitlin Morter¹, Chathumi Maduwage¹, Fay Saunders¹, Leon Pybus¹ ¹*FUJIFILM Diosynth Biotechnologies, Stockton-on-Tees, United Kingdom*

PS2-362 Major increase of the expression level of a hard-to-express bispecific biparatopic BEAT® antibody

<u>Mr Romain Mette¹</u>, Dr. Martin Bertschinger², Dr. Roberto Giovannini³

¹Ichnos Sciences SA, La Chaux De Fonds, Switzerland, ²Ichnos Sciences SA, La Chaux De Fonds, Switzerland, ³Ichnos Sciences SA, La Chaux De Fonds, Switzerland

PS3-363 Implementing multi-modal non-destructive online monitoring to qualify 3D tissues

<u>Mrs Emma Petiot</u>^{1,2}, Dr Laura Chastagnier^{1,2}, Dr Yilbert Gimenez^{1,3}, Dr Sarah Pragnere¹, Dr Celine Loubière⁴, Kleanthis Mazarakis⁵, Timo Schmidberger⁵, Dr. Christophe Marquette¹, Dr. Simon Lambert³

¹UCBL - ³d.fab, Villeurbanne, France, ²³D Innovation Lab- Sartorius / ³d.FAB, Villeurbanne, FRANCE, ³UCBL - Ampere, Villeurbanne, France, ⁴LRGP laboratory, Nancy, France, ⁵Sartorius Corporate Research, Goettingen, Germany PS1-364 Process analytical toolkit for optimizing continuous bioprocess modelling for manufacturing Mr Sandeep Ranpura¹, Mr Mauran Mahendar¹, Ms Natalia

Papalamprou¹, Ms Hatwan Galali¹, Ms Sana Shaikh¹, Mr Anthony Beaney¹, Ms Anita Dabek¹, Ms Deniz Demirhan¹ ¹Lonza, Slough, United Kingdom

PS2-365 Dielectric spectroscopy as PAT tool to monitor the viable cell concentration (VCC) of CHO cells

<u>Miss Adèle Schini¹</u>, Dr. Bruno Ebel², Dr Karine Elise Voltz¹, Dr. Emmanuel Guedon², Dr. Laurent Jourdainne¹ ¹Millipore S.A.S., an affiliate of Merck KGaA, Darmstadt, Germany, ²Laboratoire Réactions et Génie des Procédés (LRGP), Vandœuvrelès-Nancy, France

PS3-366 High-throughput Biacore[™] assays for screening and characterization of bispecific antibodies

Dr Johanna Rodhe¹, Bahareh Motaghi Moghaddam Shahri¹, Gustav Johnson¹, Narasimha Murthy Bandaru¹, Linnéa Nygren Babol¹, Albin Larsson¹, Malin Kruukka¹, Dr Prajakta Khalkar¹, Dr Ann Lövgren¹, Daniel Ivansson¹ ¹Cytiva, Uppsala, Sweden

PS1-367 Overcoming Challenges in a Novel Coagulation Factor Production: Fed-batch versus Perfusion Dr Iván Martínez-Monge¹ ¹AGC Biologics, Søborg, Denmark

PS2-368 Technical approach of a concept for the closed-loop recycling of a small-scale plastic-based bioreactor

<u>Ms. Alena Roßkamp¹</u>, Dr. Magali Barbaroux², Dr. Bernd Garska³ ¹Sartorius Stedim Biotech GmbH, Goettingen, Germany, ²Sartorius Stedim FMT S.A.S., Aubagne, France, ³Covestro Deutschland AG, Leverkusen, Germany

PS3-369 Transposon system for stable non-coding RNA overexpression in CHO production cells

<u>Ms Sonja Lochmüller</u>¹, Mr Linus Weiß¹, Mr Patrick Schlossbauer¹, Mr Florian Klingler¹, Prof. Dr. Kerstin Otte¹ ¹Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany

PS1-370 Inline viscometer as process analytical technology to measure real-time protein concentration in TFF operation <u>Dr Patrick Romann¹</u>, Ms. Zsofia Bencze², Mr. Philipp Campos¹, Mr. Antony Sibilia¹, Dr. Daniel Steinert¹, Dr. Thomas Nussbaumer¹ ¹Levitronix GmbH, Zurich, Switzerland, ²Ferring Pharmaceuticals, Epalinges, Switzerland

PS1-373 A novel hybrid bioprocess strategy addressing key challenges of advanced biomanufacturing

<u>Mr Lucas Nik Reger</u>¹, Dr. Martin Saballus¹, Mrs Annika Kappes¹, Dr. Markus Kampmann¹, Prof. Dr. Rene H. Wijffels², Dr. Dirk E. Martens², Dr. Julia Niemann¹ ¹Corporate Research, Sartorius, Göttingen, Germany, ²Bioprocess

Engineering, Wageningen University, Wageningen, Netherlands

PS2-374 CHO upstream platform development: Lower cost-of-goods and improved quality Miss Amy Mcmann¹

¹Fujifilm Diosynth Biotechnologies, Billingham , United Kingdom

PS3-375 End-to-end model-based continuous bioprocessing with central data management Dr. Wolfgang Sommeregger¹, Dr. Katrin Illner¹

¹QUBICON AG, Vienna, Austria

- PS1-376 A novel cell retention strategy introducing scalable sorting of viable cells by fluidized bed centrifugation Dr Martin Saballus¹, Mr Lucas Nik Reger¹, Dr Julia Niemann¹, Dr Markus Kampmann¹ ¹Sartorius, Corporate Research, Goettingen, Germany
- PS2-377 Scale-down model of the future: Ambr250 ® 's Innovation sparks a bioprocess revolution

<u>Ms Vanessa Henriques</u>¹, PhD Bassem Ben Yahia¹, PhD Wolfgang Paul¹ ¹Biologics DS Process Sciences, UCB Pharma S.A., Braine L'alleud, Belgium

PS3-378 Nanoparticle-based vaccines for COVID-19: Click chemistry functionalization of HIV-1 virus-like particles and extracellular vesicles

<u>Mr Marc García-Trujillo</u>¹, Dr. Jesús Lavado-García², Dr. Arnau Boix-Besora³, Prof. Laura Cervera¹, Prof. Francesc Gòdia¹ ¹Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain, ²Novo Nordisk Foundation Center for Biosustainability, Lyngby, Denmark, ³Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, Barcelona, Spain

PS1-379 Evaluation of cell growth and AAV production in a fixedbed bioreactor to streamline process development Anne MacIntyre¹, Nathan Hazi¹, Andrew Laskowski¹, Michelle Olson Peabody¹ ¹Cytiva, Westborough, United States

PS2-380 Advanced Shaken BioReactor (ASBR): Novel small-scale mammalian continuous cultivation platform

<u>Mr Claes Nymand Nilsson¹</u>, Dr Lars Poulsen¹, Dr Bjarne Rask Poulsen¹

¹Novo Nordisk A/S, Måløv, Denmark

PS3-381 microRNA technology for optimized antibody galactosylation

<u>Dr René Handrick¹</u>, Florian Klingler¹, Patrick Schlossbauer¹, Lukas Naumann², Prof. Friedemann Hesse¹, Prof. Christian Neusüß², Prof. Kerstin Otte¹

¹Institute of Applied Biotechnologie, Biberach University of Applied Sciences, Biberach, Germany, ²Department of Chemistry, Aalen University, Aalen, Germany

PS3-384 Fluorescence sensor development for online monitoring of critical process parameters in Tumour-infiltrating lymphocyte cultivations

<u>Ms Sandra Dienemann</u>¹, Dr. Ole Jacob Wohlenberg¹, Dr. Nicola Goddard², Dr. Lucia Teixeira², Dr. Mariana Werner Sunderland², Dr. John Churchwell³, Dr. Vincenco Di Cerbo³, Dr. Patrick Statham³, Dr. Dörte Solle¹, Prof. Dr. Sascha Beutel¹ ¹Institute Of Technical Chemistry, Leibniz University Hanover, Hanover, Germany, ²Achilles Therapeutics UK Ltd., London, United Kingdom, ³Cell Therapy Catapult, London, United Kingdom

PS2-386 A 3D-printed microfluidic system for automated transient transfection of suspension cells at high-cell density

<u>Mrs Michaela Dehne^{1,2}</u>, Mrs Katharina Meyer^{1,3}, Dr. Anton Enders², Prof. Dr. Janina Bahnemann^{1,4}

¹Technical Biology, Institute of Physics, University of Augsburg, Augsburg, Germany, ²Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany, ³Physiology, Institute of Theoretical Medicine, University of Augsburg, Augsburg, Germany, ⁴Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany

PS3-387 Ambient intelligence for the quantification of cell culture operations

<u>Mr Kengo Momose¹</u>, Mr Takeru Shiina¹, Dr. Yuto Takemoto¹, Mr. Kenjiro Tanaka¹, Dr. Kei Kanie², Dr. Ryuji Kato¹,³ ¹Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan, ²Graduate school of Systems engineering, Kindai University, Hiroshima, Japan, ³Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan

PS1-388 Incorporation of a click-chemistry-reactive tetrazine amino acid for the production of site-specific antibody-drug conjugates

<u>Dr Nicolas Marx</u>¹, Lea Leitner¹,², Dr. David Peña², Dr. Michael Lukesch², Prof. Nicole Borth¹ ¹University Of Natural Resources And Life Sciences Vienna (BOKU), Vienna, Austria, ²Valanx GmbH, Vienna, Austria

PS2-389

Disrupting Cell Therapy Storage and Distribution with Hypothermic Preservation of Adipose-Derived Mesenchymal Stromal Cells (MSC)

Dr. André Branco^{1,2,3}, Miss Ana Lúcia Tiago^{1,2,3}, Dr Paula Laranjeira^{4,5,6,7}, Miss Maria Catarina Carreira^{1,2,3}, MD João C. Milhano8, Dr Francisco Dos Santos9, Dr Joaquim Sampaio Cabral^{1,2,3}, Prof Artur Paiva^{4,5,6,7,1}0, Prof Cláudia Lobato da Silva^{1,2,3}, Dr Ana Fernandes-Platzgummer^{1,2,3} ¹Institute For Bioengineering And Biosciences (iBB), Instituto Superior Técnico, Universidade De Lisboa, Lisbon, Portugal, ²Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ³Associate Laboratory i⁴HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, ⁴Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal, ⁵Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Pólo das Ciências da Saúde, University of Coimbra, Coimbra, Portugal, ⁶Center for Innovative Biomedicine and Biotechnology (CIBB), Pólo das Ciências da Saúde, University of Coimbra, Coimbra, Portugal, ⁷Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal, 8Hospital São Francisco Xavier, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal, 9StemLab, S.A., Cantanhede, Portugal, ¹OCiências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, Coimbra, Portugal

PS3-390 New Era of Real-time Bioprocess Monitoring and Control – Raman-based Direct Measurements with De Novo Model Dr Stephen Driscoll¹, Dr Chris Brown¹, Mr Colin Gavin¹, Dr Milla Neffling¹, Dr Graziella Piras¹, Ms Alison Siegmann¹, Mr Morgan Siegmann¹ ¹908 Devices, Boston, United States of America

PS1-391 De Novo Approaches for Bioprocess Parameter Estimation using Raman Spectroscopy Dr Stephen Driscoll¹, Dr Chris Brown¹, Mr Colin Gavin¹, Dr Milla Neffling¹, Dr Graziella Piras¹, Ms Alison Siegmann¹, Mr Morgan Siegmann¹

¹908 Devices, Boston, United States of America

PS2-392 "Maximisation" of IgG Galactosylation: Model-led Cell Engineering Strategy for Quality Assurance in CHO mAb Products

<u>Dr Aoife Harbison</u>¹, Dr. Mina Ghahremanzamaneh¹, Mr. Itzcoatl Gómez-Aquino¹, Dr. Alfonso Blanco², Dr. Sara Carillo³, Dr. Jonathan Bones¹,³, Dr. Ioscani Jiménez Del Val¹ ¹School of Chemical and Bioprocess Engineering, University College Dublin, Dublin⁴, Ireland, ²Conway Institute, University College Dublin, Dublin⁴, Ireland, ³National Institute for Bioprocessing Research and Training, UCD, Ireland, Dublin⁴, Ireland

PS3-393 Bispecific antibodies production by mRNA transfected CHO cells

<u>Mr. Thornwit Chavalparit</u>¹, Dr. Marianne Gillard¹, Associate Prof. Timothy Mercer¹,³, Prof. Esteban Marcellin¹,², Dr Veronica Martínez¹

¹Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia, ²Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St Lucia, Australia, ³BASE mRNA facility, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia

PS1-394 Implementation of Novel Single-use Technique for Clearance of Associated Host Cell Proteins

<u>Mrs Anindita Das</u>¹, Mr Suraj Sharma², Mr Abhishek Bhatt³, Mr Madhava Paranandi⁴ ¹Kemwell Biopharma, Bengaluru, India, ²Kemwell Biopharma,

Bengaluru, India, ³Kemwell Biopharma, Bengaluru, India, ⁴Kemwell Biopharma, Bengaluru, India

PS2-395 High-throughput media optimization strategy for CHO Cell lines

<u>Dr. Jaeho Shin¹</u>, Dr. Swapnil Chaudhari¹, Dr. Ing Ali Safari¹, Dr. Dirk Müller¹ ¹Sartorius, Ulm, Germany

PS3-396 Faster cell line development by using targeted integration combined with a new automation device setting Dr Anke Mayer-Bartschmid¹

¹Bayer AG-Pharmaceuticals, Wuppertal, Germany

PS1-397 2nd gen UP.SIGHT : Generation of monoclonal cell lines, from cloning to clone selection Lucia Gordillo-Perez, Ms. Julia Scherzinger¹, Mr. Daniel Türk¹, Mr. Harrison Garner¹, Dr. Fernando Aprile Garcia¹ ¹CYTENA GmbH, Freiburg im Breisgau, Germany

PS2-398 Self-Organizing Murine Cardiac Organoids Towards Heart-On-Chip and Modeling of Congenital Defects Dr Sebastien Sart¹

¹Insitut Pasteur, Paris, France

PS3-399 Scale-down of a continuous centrifuge for the harvest of mammalian cell culture

<u>Mrs Michaela Dölle</u>^{1,2}, Mr Maxime Hervé^{1,2}, Prof. Veronique Chotteau^{1,2}

¹Cell Technology group, Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH - Royal Institute of Technology, Stockholm, Sweden, ²AdBIOPRO, Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden

PS1-400 Accelerating cell line development through efficient singlecell isolation with DISPENCELL

<u>Mrs Marie Vingerhoets</u>¹, Dr. Audrey Berger¹, Dr. Arnaud Gelb¹, Mr. Loïc Pierson¹, Dr. Georges Muller¹, Dr. David Bonzon¹ ¹SEED Biosciences SA, Epalinges, Switzerland

PS2-401 Omics to support mathematical modelling of CHO Cell processes

<u>Dr Meeri Mäkinen^{1,2}</u>, Dr Kevin Colin^{1,2}, Ms Markella Zacharouli^{1,2}, Prof Hakan Hjalmarsson^{2,3}, Prof. Veronique Chotteau^{1,2}

¹Cell Technology group, Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH - Royal Institute of Technology, , Stockholm, Sweden, ²AdBIOPRO, Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden, ³Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH - Royal Institute of Technology, Stockholm, Sweden

PS3-402 Unlocking the future of Process Analytical Technologies for adaptive process control through revolutionary dielectric spectroscopy

<u>Dr Fernanda Masri</u>¹, Dr Lindsay Fraser¹ ¹Cytomos, Edinburgh, United Kingdom

PS1-403 Intensified clarification and capture strategy by synchronization of fluidized bed centrifugation and membrane-based multi-column chromatography

<u>Mr Fabian Schmitz</u>^{1,2}, Dr. Martin Saballus¹, Dr. Thomas Kruse¹, Prof. Mirjana Minceva², Dr. Markus Kampmann¹ ¹Sartorius Stedim Biotech GmbH, Goettingen, Germany, ²Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany PS2-404 Benefits of animal origin free peptones on mammalian cellbased vaccine manufacturing

James Brooks¹, Wen-Yang Tsai¹, Ashwin Gurunathan¹, Matt Rosecrans¹, Aaron Robinson¹, Anna-Barbara Hachmann², Stacy Holdread¹, James Brooks¹ ¹Thermo Fisher Scientific, Hunt Valley, United States, ²Thermo Fisher Scientific, Grand Island, United States

PS3-405 Simple and High-Throughput Analytics for Proteins and Cells in Bioprocessing Dr Eligio lannetti¹

¹Beckman Coulter Life Sciences, Amsterdam, Netherlands

PS1-406 Rapid and In-depth Proteomic Analysis of Chinese Hamster Ovary Cells Bioprocesses

<u>Miss Darina Stoyanova¹</u>, Dr Karl Burgess¹, Dr Mark Rendall², Dr Jeff Keen², Dr Leon Pybus², Mr Luke Johnston¹, Ms Lisa Imrie¹, Dr David Mentlak³

¹University Of Edinburgh, Edinburgh, United Kingdom, ²Fujifilm Diosynth Biotechnologies, Billingham, United Kingdom, ³University of York, York, United Kingdom

PS2-407 Novel application of next generation sequencing to characterise recombinant cell lines and determine genetic stability

<u>Dr. Pamela Hamill¹</u>, Dr Leyla Diaz², Dr Danielle Hickman², Dr Alexei Slesarev²

¹Merck , Glasgow, United Kingdom, ²Merck, Rockville, USA

Theme 05. Innovate or Die - Technology Innovation

Poster Session 1, June 24, 2024, 2:15 PM - 3:45 PM Poster Session 2, June 24, 2024, 7:30 PM - 9:00 PM Poster Session 3, June 25, 2024, 2:30 PM - 4:00 PM

PS3-408 Antiviral Activity of Influenza A Defective Interfering Particles against Multiple Viruses In Vitro

<u>Ms Patricia Opitz</u>¹, Mr Lars Pelz², Ms Elena Piagnani², Mr Patrick Marsall², Ms Nancy Wynserski², Mr Marc Dominique Hein¹, Mr Pavel Marichal-Gallardo², Dr Sascha Young Kupke², Prof Udo Reichl¹,²

¹Otto von Guericke Univerity, Magdeburg, Germany, ²Max Planck Institute , Magdeburg , Germany

PS2-410 Tiny Trouble?: Long-Term Effects of Microplastics on Murine Macrophages

<u>Ms Johanna Fritsche¹</u>, Dr. Valérie Jérôme¹, Prof. Dr. Ruth Freitag¹ ¹University Of Bayreuth, Bayreuth, Germany

PS3-411 An Economic and Controlled Bioprocess for Manufacturing Red Blood Cells from Stem Cells

<u>Prof. Robert Thomas</u>^{1,2}, Dr Katie Glen^{1,2}, Dr Polina Vickhreva¹, Dr Mela Twist¹, Mrs Laura Erdos¹, Dr Vincent Ho^{3,6}, Dr Kenneth Church⁴, Dr Janice Moser⁴, Dr Michael Mansour⁵, Mr Doug McConnell¹

¹Safi Biotherapeutics Inc, Boston and Loughborough, USA and UK, ²Loughborough University, Loughborough, UK, ³⁴DBio³ Centre for Biotechnology, USU, Bethesda, USA, ⁴Sciperio Inc, Orlando, USA, ⁵Massachusetts General Hospital, Boston, USA, ⁶Department of Radiology and Radiological Sciences, USU, Bethesda, USA

PS1-412 Cationic flocculants assisted clarification

<u>Ms Anna-Carina Frank</u>¹, Mr Daniel Komuczki¹, Ms Clara Hofmann², Ms Natalie Deiringer², Ms Felicitas Guth², Ms Elisabeth Grünstein², Mr Rainer Hahn¹, Mr Peter Satzer¹ ¹Boku - University Of Natural Resources And Life Sciences, Vienna, Austria, ²BASF SE, Ludwigshafen am Rhein, Germany

PS2-413 Exploring NutriStor as a novel Chemically Defined Solution for Short-Term Cold Storage of Cells

<u>Mrs Mira Genser Nir</u>¹, Ms Anat Vishlitsky¹, Ms Meital Gury Ben-Ari¹, Mr David Fiorentini¹ ¹Research and development, Advanced Therapy Solution (ATS) Unit, Sartorius, Beit Haemek, Israel, Kibbutz Beit Haemek, Israel

PS3-414 Catching the perfect sweetness: Critical parameters in CLD and USP to gain best-fitting protein N-glycosylation Dr Lena Tholen¹ ¹Fvonibio Gmbh, Berlin, Germany

138 () esact2024.com The 28th European Society for Animal Cell Technology (ESACT) Conference

PS1-415 Bioprocess Intensification with Peptide-Based Cell Culture Media Optimization Using Tyrosine and/or Cystine (Di-) Peptides

> <u>Dr Stephan Brinkmann</u>¹, Ms Christina Jost¹, Ms Tamara Heinze¹, Mr Tomislav Trescec¹, Dr Anne Benedikt¹, Dr Martin Schilling¹ ¹Evonik Operations GmbH, Darmstadt, Germany

- PS2-416 First ever animal-free, cell line-derived human S9 fraction for in vitro drug metabolisation Dr Beat Thalmann¹ ¹Scinora GmbH, Rafz, Switzerland
- PS1-418 Getting Fat: Adipogenesis of Pluripotent Stem Cells in Livestock Species for Cultivated Meat <u>Miss Sarah Ho</u>¹, Dr Joe Mee¹, Dr Ana Almeida¹, Dr Pritika Singh¹, Miss Marta Esquiva Diaz¹, Miss Niamh Hyland¹ ¹Roslin Technologies, Edinburgh, United Kingdom

PS2-419 Upskilling the cell therapy manufacturing workforce

<u>Flora J Keumurian¹</u>, Paul W. Barone¹, John Duguid², Caleb Neufeld¹, Betsy Skrip¹, Stacy Springs¹, Humberto Vega Mercado³, Krystyn Van Vliet⁴, Jacqueline Wolfrum¹, Mingyu Yang¹

¹*MIT, Cambridge, United States, ²Vericel, Cambridge, United States,* ³*Bristol-Myers Squibb, Princeton, United States,* ⁴*Cornell University, New York, United States*

PS3-420 A 3D-printed microfluidic cultivation system for parallel monitoring of perfused 3D cell cultures

<u>Ms Katharina V. Meyer</u>^{1,2}, Ms Michaela Dehne¹, Dr. Steffen Winkler¹, Prof. Anja Meissner^{2,3}, Prof. Janina Bahnemann^{1,4} ¹Technical Biology, Institute of Physics, University of Augsburg, Augsburg, Germany, ²Physiology, Institute of Theoretical Medicine, University of Augsburg, Augsburg, Germany, ³Department of Experimental Medical Sciences & Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden, ⁴Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany

PS1-421 CRISPRing up CHO: Unveiling the blueprint for a dual-guide mediated genome-wide CRISPR/Cas9 screen in CHO

<u>Ms Ivy Rose Sebastian¹</u>,², Mr Federico De Marco¹,², Mr Antonino Napoleone¹,², Dr. Nina Bydlinski², Prof Nicole Borth¹ ¹University of Natural Resources and Life Sciences (BOKU), Vienna, Austria, ²Austrian Centre of Industrial Biotechnology (acib) GmbH, Graz, Austria

PS2-422 Trial for cell preparation for Cellular food

<u>Mr Koshiro Hashimoto¹</u>², Dr. Noriko Yamano-Adachi¹, Prof Takeshi Omasa¹ ¹Osaka University, Suita, Osaka, Japan, ²NH Foods Ltd. R&D CENTER, Tsukuba, Ibaraki, Japan

PS3-423 Development of an edible and food-grade microcarrier for cultured meat production

<u>Mr Andreu Camacho Sucarrats¹</u>,², Dr. Javier Fuenmayor¹, Dra. Sara Borrego-González¹, Dr. Mario Notari¹, Dra. Natasa Illic¹, Prof. Francesc Gòdia², Dra. Yuliana Enciso¹, Mr Andy Díaz-Maneh¹,², Ms Natalia García-Aranda¹, Mr. Iker Iapeña¹,², Dra. Raquel Revilla¹

¹CUBIQ FOODS S.L, Granollers, Spain, ²Universitat Auntónoma de Barcelona, Bellaterra, Spain

PS1-424 Process intensification opportunities in early phase development and large-scale production

<u>Mr Christoph Dattenboeck</u>¹, Jackie Gonzalez², Zoe Horton², Stuart Chance¹, Thomas Posch¹, Bernd Fuhrmann¹, Hideyuki Kajihara³, Huimin Liao³ ¹Takeda, , Austria, ²Takeda, , USA, ³Takeda, Japan

PS2-428 Convergence of Population Growth, Affluence, and Sustainable Meat Production: Insights from the Cultivated Meat Industry

<u>Mr Kalle Johnson¹</u>, Dr Kevin Kayser¹ ¹Upside Foods, Berkeley, United States

PS3-429 GS Effex, a new Lonza host cell line for the production of antibodies with Enhanced ADCC activity

<u>Marc Feary¹</u>, Bernie Sweeney², Qi Lui¹, Miss Julliana Banderas Torijano¹, Najla Chukkan¹

¹Mammalian Expression R&D, Cambridge, United Kingdom, ²Mammalian Expression R&D - Lonza Biologics, Slough, United Kingdom

PS1-430 Study of the role of chronokine X35 in the spinal cord and peripheral nerve injuries

<u>Mr Rubén Guerrero-Yagüe^{1,2,3}</u>, Dr Sergi Verdés^{1,2,3}, Dr Maria Puigdomenech^{1,4,5}, Dr Mireia Herrando-Grabulosa^{1,4,5}, Dr Esther Udina^{1,4,5}, Dr Miguel Chillón^{1,2,3,6}, Dr Rubèn López-Vales^{1,4,5}, Dr Assumpció Bosch^{1,2,3,5}

¹Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Cerdanyola Del Vallès. Barcelona, Spain, ²Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona (UAB), Cerdanyola Del Vallès. Barcelona, Spain, ³Unitat Mixta UAB-VHIR, Vall D'Hebron Institut de Recerca (VHIR), Barcelona, Spain, ⁴Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola Del Vallès. Barcelona, Spain, ⁵Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain, ⁶Institut Català de Recerca I Estudis Avançats (ICREA), Spain

PS2-431 Mechanistic modelling of bioreactors: development of a digital twin

<u>Dr. Andrej Pohar</u>¹, Tina Šmuc¹ ¹Novartis

© 2024 Beckman Coulter, Inc. All rights reserved. Beckman Coulter, the stylized logo, and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are property of their respective owners.

For Beckman Coulter's worldwide office locations and phone numbers, please visit Contact Us at beckman.com